참고문헌
- Ahmed, R.A., Fenjan, R.M., Hamad, L.B. and Faleh, N.M. (2020), "A review of effects of partial dynamic loading on dynamic response of nonlocal functionally graded material beams", Adv. Mater. Res., 9(1), 33-48. https://doi.org/10.12989/amr.2020.9.1.033.
- Akbulut, M. and Sonmez, F.O. (2008), "Optimum design of composite laminates for minimum thickness", Comput. Struct., 86(21-22), 1974-1982. https://doi.org/10.1016/j.compstruc.2008.05.003.
- Akbulut, M., Sarac, A. and Ertas, A.H. (2020), "An investigation of non-linear optimization methods on composite structures under vibration and buckling loads", Adv. Comput. Des., 5, 209-231. https://doi.org/10.12989/acd.2020.5.3.209 209.
- Butcher, R.J., Rousseau, C.E. and Tippur, H.V. (1999), "A functionally graded particulate composite: Measurements and Failure Analysis", Acta. Mater., 47(2), 259-268. https://doi.org/10.1016/S1359-6454(98)00305-X.
- Carpinteri, A. and Pugno, N. (2006), "Cracks in re-entrant corners in functionally graded materials", Eng. Fract. Mech., 73, 1279-1291. https://doi.org/10.1016/j.engfracmech.2006.01.008.
- Chen, F., Jia, M., She, Y., Wu, Y., Shen, Q. and Zhang, L. (2020), "Mechanical behavior of AlN/Mo functionally graded materials with various compositional structures", J. Alloys. Compd., 816, 152512. https://doi.org/10.1016/j.jallcom.2019.152512.
- Chobanian, K.S. (1997), Stresses in Combined Elastic Solids, Science.
- Dolgov, N.A. (2002), "Effect of the elastic modulus of a coating on the serviceability of the substrate-coating system", Strength Mater., 34, 153-157. https://doi.org/10.1023/A:1015362426688.
- Dolgov, N.A. (2005), "Determination of stresses in a two-layer coating", Strength Mater., 37(2), 422-431. https://doi.org/10.1007/s11223-005-0053-7.
- Dolgov, N.A. (2016), "Analytical methods to determine the stress state in the substrate-coating system under mechanical loads", Strength Mater., 48(1), 658-667. https://doi.org/10.1007/s11223-016-9809-5.
- Gasik, M.M. (2010), "Functionally graded materials: Bulk processing techniques", Int. J. Mater. Prod. Technol., 39(1-2), 20-29. https://doi.org/10.1504/IJMPT.2010.034257.
- Hedia, H.S., Aldousari, S.M., Abdellatif, A.K. and Fouda, N.A. (2014), "New design of cemented stem using functionally graded materials (FGM)", Biomed. Mater. Eng., 24(3), 1575-1588. https://doi.org/10.3233/BME-140962.
- Hirai, T. and Chen, L. (1999), "Recent and prospective development of functionally graded materials in Japan", Mater. Sci. Forum, 308-311(4), 509-514. https://doi.org/10.4028/www.scientific.net/MSF.308-311.509.
- Hsueh, C.H., Tuan, W.H. and Wei, W.C.J. (2006), "Analyses of steady-state interface fracture of elastic multilayered beams under four-point bending", Scripta Mater., 60, 721-724. https://doi.org/10.1016/j.scriptamat.2009.01.001.
- Hutchinson, J.W. and Suo, Z. (1992), "Mixed mode cracking in layered materials", Adv. Appl. Mech., 64, 804-810. https://doi.org/10.1016/S0065-2156(08)70164-9.
- Madan, R., Saha, K. and Bhowmick, S. (2020), "Limit speeds and stresses in power law functionally graded rotating disks", Adv. Mater. Res., 9(2), 115-131. https://doi.org/10.12989/amr.2020.9.2.115.
- Mahamood, R.M. and Akinlabi, E.T. (2017), Functionally Graded Materials, Springer International Publishing, Cham, Switzerland.
- Markworth, A.J., Ramesh, K.S. and Parks, Jr.W.P. (1995), "Review: Modeling studies applied to functionally graded materials", J. Mater. Sci., 30(3), 2183-2193. https://doi.org/10.1007/BF01184560.
- Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A. and Ford, R.G. (1999), Functionally Graded Materials: Design, Processing and Applications, Springer, New York, NY, USA.
- Nemat-Allal, M.M., Ata, M.H., Bayoumi, M.R. and Khair-Eldeen, W. (2011), "Powder metallurgical fabrication and microstructural investigations of aluminum/steel functionally graded material", Mater. Sci. Appl., 2(5), 1708-1718. https://doi.org/10.4236/msa.2011.212228.
- Nguyen, S.N., Lee, J. and Cho, M. (2015), "Efficient higher-order zig-zag theory for viscoelastic laminated composite plates", Int. J. Solids Struct., 62, 174-185. https://doi.org/10.1016/j.ijsolstr.2015.02.027.
- Nguyen, S.N., Lee, J., Han, J.W. and Cho, M. (2020), "A coupled hygrothermo-mechanical viscoelastic analysis of multilayered composite plates for long-term creep behaviors", Compos. Struct., 242, 112030. https://doi.org/10.1016/j.compstruct.2020.112030.
- Nikbakht, S., Kamarian, S. and Shakeri, M.A. (2019), "A review on optimization of composite structures Part II: Functionally graded materials", Compos. Struct., 214, 83-102. https://doi.org/10.1016/j.compstruct.2019.01.105.
- Radhika, N., Sasikumar, J., Sylesh, J.L. and Kishore, R. (2020), "Dry reciprocating wear and frictional behaviour of B4C reinforced functionally graded and homogenous aluminium matrix composites", J. Mater. Res. Technol., 9, 1578-1592. https://doi.org/10.1016/j.jmrt.2019.11.084.
- Rizov, V. (2023), "Delamination analysis of multilayered functionally graded beams which exhibit non-linear creep behavior", J. Appl. Comput. Mech., 9(4), 935-944 https://doi.org/10.22055/jacm.2023.42743.3969.
- Rizov, V.I. (2018), "Non-linear fracture in bi-directional graded shafts in torsion", Multidiscip. Model. Mater. Struct., 14, 387-399. https://doi.org/10.1108/MMMS-12-2017-0163.
- Rizov, V.I. (2020), "Longitudinal fracture analysis of continuously inhomogeneous beam in torsion with stress relaxation", Struct. Integr. Proc., 28, 1212-122. https://doi.org/10.1016/j.prostr.2020.11.103.
- Rizov, V.I. (2021), "Delamination analysis of multilayered beams exhibiting creep under torsion", Coupl. Syst. Mech., 10, 317-331. https://doi.org/10.12989/csm.2021.10.4.317.
- Rizov, V.I. (2022), "Effects of periodic loading on longitudinal fracture in viscoelastic functionally graded beam structures", J. Appl. Comput. Mech., 8(1), 370-378. https://doi.org/10.22055/JACM.2021.37953.3141.
- Rizov, V.I. and Altenbach, H. (2023), "Fracture analysis of inhomogeneous arch with two longitudinal cracks under non-linear creep", Adv. Mater. Res., 12(1), 15-29. https://doi.org/10.12989/amr.2023.12.1.015.
- Saiyathibrahim, A., Subramanian, R. and Samson Jerold Samuel, C. (2019), "Processing and properties evaluation of centrifugally cast in-situ functionally graded composites reinforced with Al3Ni and Si particles", Mater. Res. Express, 6(11) 1165a8. https://doi.org/10.1088/2053-1591/ab4c9f.
- Shrikantha Rao, S. and Gangadharan, K.V. (2014), "Functionally graded composite materials: An overview", Proc. Mater. Sci., 5(1), 1291-1299. https://doi.org/10.1016/j.mspro.2014.07.442.
- Tilbrook, M.T., Moon, R.J. and Hoffman, M. (2005), "Crack propagation in graded composites", Compos. Sci. Technol., 65, 201-220. https://doi.org/10.1016/j.compscitech.2004.07.004.
- Toudehdehghan, J., Lim, W., Foo, K.E., Ma'arof, M.I.N. and Mathews, J. (2017), "A brief review of functionally graded materials", MATEC Web Conf., 131, 03010. https://doi.org/10.1051/matecconf/201713103010.
- Uslu Uysal, M. (2016), "Buckling behaviours of functionally graded polymeric thin-walled hemispherical shells", Steel Compos. Struct., 21(1), 849-862. https://doi.org/10.12989/scs.2016.21.4.849.
- Uslu Uysal, M. and Guven, U. (2015), "Buckling of functional graded polymeric sandwich panel under different load cases", Compos. Struct., 121, 182-196. https://doi.org/10.1016/j.compstruct.2014.11.012.
- Uslu Uysal, M. and Guven, U. (2016), "A bonded plate having orthotropic inclusion in adhesive layer under in-plane shear loading", J. Adhes., 92, 214-235. https://doi.org/10.1080/00218464.2015.1019064.
- Uslu Uysal, M. and Kremzer, M. (2015), "Buckling behaviour of short cylindrical functionally gradient polymeric materials", Acta Phys. Polon., A127, 1355-1357. https://doi.org/10.12693/APhysPolA.127.1355.
- Zubchaninov, V.G. (1990), Fundamentals of Theory of Elasticity and Plasticity, Vishaya Shcola, Minsk, Belarus.