DOI QR코드

DOI QR Code

BJÖRLING PROBLEM FOR ZERO MEAN CURVATURE SURFACES IN THE THREE-DIMENSIONAL LIGHT CONE

  • Joseph Cho (Institute of Discrete Mathematics and Geometry TU Wien) ;
  • So Young Kim (Department of Mathematics Korea University) ;
  • Dami Lee (Department of Mathematics Indiana University) ;
  • Wonjoo Lee (Department of Mathematics Korea University) ;
  • Seong-Deog Yang (Department of Mathematics Korea University)
  • Received : 2023.03.09
  • Accepted : 2023.04.21
  • Published : 2024.03.31

Abstract

We solve the Björling problem for zero mean curvature surfaces in the three-dimensional light cone. As an application, we construct and classify all rotational zero mean curvature surfaces.

Keywords

Acknowledgement

The last author gratefully acknowledges the support from NRF of Korea (NRF 2020R1F1A1A01074585).

References

  1. M. Abe, J. Cho, and Y. Ogata, Constant mean curvature surfaces in hyperbolic 3-space with curvature lines on horospheres, Kobe J. Math. 35 (2018), no. 1-2, 21-44.
  2. S. Akamine and H. Fujino, Reflection principle for lightlike line segments on maximal surfaces, Ann. Global Anal. Geom. 59 (2021), no. 1, 93-108. https://doi.org/10.1007/s10455-020-09743-4
  3. S. Akamine and H. Fujino, Reflection principles for zero mean curvature surfaces in the simply isotropic 3-space, Results Math. 77 (2022), no. 4, Paper No. 176, 13 pp. https://doi.org/10.1007/s00025-022-01718-0
  4. S. Akamine, M. Umehara, and K. Yamada, Space-like maximal surfaces containing entire null lines in Lorentz-Minkowski 3-space, Proc. Japan Acad. Ser. A Math. Sci. 95 (2019), no. 9, 97-102. https://doi.org/10.3792/pjaa.95.97
  5. L. Alias, R. M. B. Chaves, and P. Mira, Bjorling problem for maximal surfaces in Lorentz-Minkowski space, Math. Proc. Cambridge Philos. Soc. 134 (2003), no. 2, 289-316. https://doi.org/10.1017/S0305004102006503
  6. A. C. Asperti and J. Vilhena, Bjorling problem for spacelike, zero mean curvature surfaces in L4, J. Geom. Phys. 56 (2006), no. 2, 196-213. https://doi.org/10.1016/j.geomphys.2005.01.006
  7. E. G. Bjorling, In integrationem aequationis Derivatarum partialium superficiei, cujus in puncto unoquoque principales ambo radii curvedinis aequales sunt signoque contrario, Arch. Math. Phys. 4 (1844), no. 1, 290-315.
  8. D. Brander and J. F. Dorfmeister, The Bjorling problem for non-minimal constant mean curvature surfaces, Comm. Anal. Geom. 18 (2010), no. 1, 171-194. https://doi.org/10.4310/CAG.2010.v18.n1.a7
  9. D. Brander and P. Wang, On the Bjorling problem for Willmore surfaces, J. Differential Geom. 108 (2018), no. 3, 411-457. https://doi.org/10.4310/jdg/1519959622
  10. M. do Carmo and M. Dajczer, Rotation hypersurfaces in spaces of constant curvature, Trans. Amer. Math. Soc. 277 (1983), no. 2, 685-709. https://doi.org/10.2307/1999231
  11. M. P. Dussan, A. P. Franco Filho, and M. A. Magid, The Bjorling problem for timelike minimal surfaces in ℝ41, Ann. Mat. Pura Appl. (4) 196 (2017), no. 4, 1231-1249. https://doi.org/10.1007/s10231-016-0614-3
  12. S. Fujimori, Y. Kawakami, M. Kokubu, W. Rossman, M. Umehara, K. Yamada, and S. Yang, Analytic extensions of constant mean curvature one geometric catenoids in de Sitter 3-space, Differential Geom. Appl. 84 (2022), Paper No. 101924, 35 pp. https://doi.org/10.1016/j.difgeo.2022.101924
  13. S. Fujimori, Y. W. Kim, S. Koh, W. Rossman, H. Shin, M. Umehara, K. Yamada, and S. Yang, Zero mean curvature surfaces in Lorentz-Minkowski 3-space which change type across a light-like line, Osaka J. Math. 52 (2015), no. 1, 285-297. http://projecteuclid.org/euclid.ojm/1427202882
  14. Y. W. Kim, S. Koh, H. Shin, and S. Yang, Spacelike maximal surfaces, timelike minimal surfaces, and Bjorling representation formulae, J. Korean Math. Soc. 48 (2011), no. 5, 1083-1100. https://doi.org/10.4134/JKMS.2011.48.5.1083
  15. Y. W. Kim and S.-D. Yang, Prescribing singularities of maximal surfaces via a singular Bjorling representation formula, J. Geom. Phys. 57 (2007), no. 11, 2167-2177. https://doi.org/10.1016/j.geomphys.2007.04.006
  16. H. Liu, Surfaces in the lightlike cone, J. Math. Anal. Appl. 325 (2007), no. 2, 1171-1181. https://doi.org/10.1016/j.jmaa.2006.02.064
  17. H. Liu, Representation of surfaces in 3-dimensional lightlike cone, Bull. Belg. Math. Soc. Simon Stevin 18 (2011), no. 4, 737-748. http://projecteuclid.org/euclid.bbms/1320763134
  18. H. Liu and S. D. Jung, Hypersurfaces in lightlike cone, J. Geom. Phys. 58 (2008), no. 7, 913-922. https://doi.org/10.1016/j.geomphys.2008.02.011
  19. M. Pember, Weierstrass-type representations, Geom. Dedicata 204 (2020), 299-309. https://doi.org/10.1007/s10711-019-00456-y
  20. J. J. Seo and S.-D. Yang, Zero mean curvature surfaces in isotropic three-space, Bull. Korean Math. Soc. 58 (2021), no. 1, 1-20. https://doi.org/10.4134/BKMS.b190783
  21. M. Umehara and K. Yamada, Maximal surfaces with singularities in Minkowski space, Hokkaido Math. J. 35 (2006), no. 1, 13-40. https://doi.org/10.14492/hokmj/1285766302
  22. M. Umehara and K. Yamada, Hypersurfaces with light-like points in a Lorentzian manifold, J. Geom. Anal. 29 (2019), no. 4, 3405-3437. https://doi.org/10.1007/s12220-018-00118-7
  23. K. T. Weierstrass, Untersuchungen uber die Flachen, deren mittlere Krummung uberall gleich Null ist, Monatsber. Berliner Akad. (1866), 612-625.
  24. S.-D. Yang, Bjorling formula for mean curvature one surfaces in hyperbolic three-space and in de Sitter three-space, Bull. Korean Math. Soc. 54 (2017), no. 1, 159-175. https://doi.org/10.4134/BKMS.b150984