DOI QR코드

DOI QR Code

CERTAIN DIFFERENTIAL IDENTITIES IN PRIME RINGS WITH ANTI-AUTOMORPHISMS

  • Received : 2023.01.18
  • Accepted : 2023.12.18
  • Published : 2024.03.31

Abstract

The objective of this paper is to study some central identities involving generalized derivations and anti-automorphisms in prime rings. Using the tools of the theory of functional identities, several known results have been generalized as well as improved.

Keywords

Acknowledgement

The authors are thankful to the anonymous referee for his/her useful suggestions.

References

  1. S. Ali and N. A. Dar, On *-centralizing mappings in rings with involution, Georgian Math. J. 21 (2014), no. 1, 25-28. https://doi.org/10.1515/gmj-2014-0006 
  2. S. Ali and N. A. Dar, On centralizers of prime rings with involution, Bull. Iranian Math. Soc. 41 (2015), no. 6, 1465-1475. 
  3. S. Ali, N. A. Dar, and M. A,sci, On derivations and commutativity of prime rings with involution, Georgian Math. J. 23 (2016), no. 1, 9-14. https://doi.org/10.1515/gmj-2015-0016 
  4. S. Ali, M. S. Khan, and M. Ayedh, On central identities equipped with skew Lie product involving generalized derivations, J. King Saud Univ. Sci. 34 (2022), no. 3, Paper No. 101860, 7pp. https://doi.org/10.1016/j.jksus.2022.101860 
  5. M. Ashraf, A. Ali, and S. Ali, Some commutativity theorems for rings with generalized derivations, Southeast Asian Bull. Math. 31 (2007), no. 3, 415-421. 
  6. K. I. Beidar and W. S. Martindale III, On functional identities in prime rings with involution, J. Algebra 203 (1998), no. 2, 491-532. https://doi.org/10.1006/jabr.1997.7285 
  7. K. I. Beidar, W. S. Martindale III, and A. V. Mikhalev, Rings with generalized identities, Monographs and Textbooks in Pure and Applied Mathematics, 196, Marcel Dekker, Inc., New York, 1996. 
  8. A. Boua and M. Ashraf, Identities related to generalized derivations in prime *-rings, Georgian Math. J. 28 (2021), no. 2, 193-205. https://doi.org/10.1515/gmj-2019-2056 
  9. M. Bresar, Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993), no. 2, 385-394. https://doi.org/10.1006/jabr.1993.1080 
  10. M. Bresar, M. A. Chebotar, and W. S. Martindale III, Functional Identities, Frontiers in Mathematics, Birkhauser Verlag, Basel, 2007. 
  11. M. Bresar and J. Vukman, On some additive mappings in rings with involution, Aequationes Math. 38 (1989), no. 2-3, 178-185. https://doi.org/10.1007/BF01840003 
  12. N. A. Dar and S. Ali, On *-commuting mappings and derivations in rings with involution, Turkish J. Math. 40 (2016), no. 4, 884-894. https://doi.org/10.3906/mat-1508-61 
  13. N. A. Dar and A. N. Khan, Generalized derivations in rings with involution, Algebra Colloq. 24 (2017), no. 3, 393-399. https://doi.org/10.1142/S1005386717000244 
  14. N. J. Divinsky, On commuting automorphisms of rings, Trans. Roy. Soc. Canada Sect. III 49 (1955), 19-22. 
  15. S. F. El-Deken and H. Nabiel, Centrally-extended generalized *-derivations on rings with involution, Beitr. Algebra Geom. 60 (2019), no. 2, 217-224. https://doi.org/10.1007/s13366-018-0415-5 
  16. M. P. Eroglu, T.-K. Lee, and J.-H. Lin, Anti-endomorphisms and endomorphisms satisfying an Engel condition, Comm. Algebra 47 (2019), no. 10, 3950-3957. https://doi.org/10.1080/00927872.2019.1572175 
  17. M. Fosner and J. Vukman, Identities with generalized derivations in prime rings, Mediterr. J. Math. 9 (2012), no. 4, 847-863. https://doi.org/10.1007/s00009-011-0158-0 
  18. I. N. Herstein, Rings with Involution, Chicago Lectures in Mathematics, Univ. Chicago Press, Chicago, IL, 1976. 
  19. I. N. Herstein, A note on derivations, Canad. Math. Bull. 21 (1978), no. 3, 369-370. https://doi.org/10.4153/CMB-1978-065-x 
  20. B. Hvala, Generalized derivations in rings, Comm. Algebra 26 (1998), no. 4, 1147-1166. https://doi.org/10.1080/00927879808826190 
  21. M. A. Idrissi and L. Oukhtite, Some commutativity theorems for rings with involution involving generalized derivations, Asian-Eur. J. Math. 12 (2019), no. 1, Paper No. 1950001, 11 pp. https://doi.org/10.1142/S1793557119500013
  22. C. Lanski, Differential identities, Lie ideals, and Posner's theorems, Pacific J. Math. 134 (1988), no. 2, 275-297. http://projecteuclid.org/euclid.pjm/1102689262  102689262
  23. T.-K. Lee, Anti-automorphisms satisfying an Engel condition, Comm. Algebra 45 (2017), no. 9, 4030-4036. https://doi.org/10.1080/00927872.2016.1255894 
  24. T.-K. Lee, Commuting anti-homomorphisms, Comm. Algebra 46 (2018), no. 3, 1060-1065. https://doi.org/10.1080/00927872.2017.1335746 
  25. T.-K. Lee, Certain basic functional identities of semiprime rings, Comm. Algebra 47 (2019), no. 1, 17-29. https://doi.org/10.1080/00927872.2018.1439049 
  26. J.-H. Lin, Jordan τ-derivations of prime GPI-rings, Taiwanese J. Math. 24 (2020), no. 5, 1091-1105. https://doi.org/10.11650/tjm/191105 
  27. C.-K. Liu, Additive n-commuting maps on semiprime rings, Proc. Edinb. Math. Soc. (2) 63 (2020), no. 1, 193-216. https://doi.org/10.1017/s001309151900018x 
  28. A. Mamouni, B. Nejjar, and L. Oukhtite, Differential identities on prime rings with involution, J. Algebra Appl. 17 (2018), no. 9, Paper No. 1850163, 11 pp. https://doi.org/10.1142/S0219498818501633 
  29. A. Mamouni, L. Oukhtite, and M. Zerra, Certain algebraic identities on prime rings with involution, Comm. Algebra 49 (2021), no. 7, 2976-2986. https://doi.org/10.1080/00927872.2021.1887203 
  30. B. Nejjar, A. Kacha, A. Mamouni, and L. Oukhtite, Commutativity theorems in rings with involution, Comm. Algebra 45 (2017), no. 2, 698-708. https://doi.org/10.1080/00927872.2016.1172629 
  31. B. Nejjar, A. Kacha, A. Mamouni, and L. Oukhtite, Certain commutativity criteria for rings with involution involving generalized derivations, Georgian Math. J. 27 (2020), no. 1, 133-139. https://doi.org/10.1515/gmj-2018-0010 
  32. L. Oukhtite, Posner's second theorem for Jordan ideals in rings with involution, Expo. Math. 29 (2011), no. 4, 415-419. https://doi.org/10.1016/j.exmath.2011.07.002 
  33. L. Oukhtite and A. Mamouni, Generalized derivations centralizing on Jordan ideals of rings with involution, Turkish J. Math. 38 (2014), no. 2, 225-232. https://doi.org/10.3906/mat-1203-14 
  34. L. Oukhtite and O. A. Zemzami, A study of differential prime rings with involution, Georgian Math. J. 28 (2021), no. 1, 133-139. https://doi.org/10.1515/gmj-2019-2061 
  35. E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100. https://doi.org/10.2307/2032686 
  36. L. Rowen, Some results on the center of a ring with polynomial identity, Bull. Amer. Math. Soc. 79 (1973), 219-223. https://doi.org/10.1090/S0002-9904-1973-13162-3 
  37. M. A. Siddeeque, N. Khan, and A. A. Abdullah, Weak Jordan *-derivations of prime rings, J. Algebra Appl. 22 (2023), no. 5, Paper No. 2350105, 34 pp. https://doi.org/10.1142/S0219498823501050 
  38. S. K. Tiwari, R. K. Sharma, and B. Dhara, Identities related to generalized derivation on ideal in prime rings, Beitr. Algebra Geom. 57 (2016), no. 4, 809-821. https://doi.org/10.1007/s13366-015-0262-6 
  39. J. Vukman, Commuting and centralizing mappings in prime rings, Proc. Amer. Math. Soc. 109 (1990), no. 1, 47-52. https://doi.org/10.2307/2048360 
  40. Y. Wang, Power-centralizing automorphisms of Lie ideals in prime rings, Comm. Algebra 34 (2006), no. 2, 609-615. https://doi.org/10.1080/00927870500387812 
  41. O. A. Zemzami, L. Oukhtite, S. Ali, and N. Muthana, On certain classes of generalized derivations, Math. Slovaca 69 (2019), no. 5, 1023-1032. https://doi.org/10.1515/ms-2017-0286