DOI QR코드

DOI QR Code

Electrical Characteristics of SiC MOSFET Utilizing Gate Oxide Formed by Si Deposition

Si 증착 이후 형성된 게이트 산화막을 이용한 SiC MOSFET의 전기적 특성

  • Young-Hun Cho (Dept. of Electronic materials Engineering, Kwangwoon University) ;
  • Ye-Hwan Kang (Dept. of Electronic materials Engineering, Kwangwoon University) ;
  • Chang-Jun Park (Dept. of Electronic materials Engineering, Kwangwoon University) ;
  • Ji-Hyun Kim (Dept. of Electronic materials Engineering, Kwangwoon University) ;
  • Geon-Hee Lee (Dept. of Electronic materials Engineering, Kwangwoon University) ;
  • Sang-Mo Koo (Dept. of Electronic materials Engineering, Kwangwoon University)
  • Received : 2024.03.20
  • Accepted : 2024.03.25
  • Published : 2024.03.31

Abstract

In this study, we investigated the electrical characteristics of SiC MOSFETs by depositing Si and oxidizing it to form the gate oxide layer. A thin Si layer was deposited approximately 20 nm thick on top of the SiC epi layer, followed by oxidation to form a gate oxide layer of around 55 nm. We compared devices with gate oxide layers produced by oxidizing SiC in terms of interface trap density, on-resistance, and field-effect mobility. The fabricated devices achieved improved interface trap density (~8.18 × 1011 eV-1cm-2), field-effect mobility (27.7 cm2/V·s), and on-resistance (12.9 mΩ·cm2).

이번 연구에서 우리는 게이트 산화막을 형성하기 위해 Si을 증착한 후 산화시킨 SiC MOSFET의 전기적 특성을 연구했다. 고품질의 Si/SiO2 계면을 제작하기 위해 얇은 Si 층을 SiC epi 층 위에 약 20 nm을 증착한 후 산화하여 게이트 산화막을 약 55 nm로 형성했다. SiC를 산화하여 게이트 산화막을 제작한 소자와 계면 트랩 밀도, 온저항, 전계-효과 이동도의 측면에서 비교했다. 위 소자는 향상된 계면 트랩 밀도 (~8.18 × 1011 eV-1cm-2), 전계-효과 이동도 (27.7 cm2/V·s), 온저항 (12.9 mΩ·cm2)을 달성하였다.

Keywords

Acknowledgement

This work was supported by the Fostering Global Talents for Innovative Growth Program through KIAT (P0012451 and P0017308) of the MOTIE and Research Grant from Kwangwoon University in 2024.

References

  1. T. Kimoto and J. A. Cooper, Fundamentals of Silicon Carbide Technology, Wiley, 2014.
  2. H. Matsunami and T. Kimoto, "Step-controlled epitaxial growth of SiC: High quality homoepitaxy," Mater. Sci. Eng. R vol.20, pp.125, 1997. DOI: 10.1016/S0927-796X(97)00005-3
  3. Lee, Hyung-Jin, et al. "Impact of Post-Deposition Annealing on Electrical Properties of RF-Sputtered Cu2O/4H-SiC and NiO/4H-SiC PiN Diodes," Electronic Materials Letters:1-11. 2024. DOI: 10.1007/s13391-024-00484-1
  4. B. J. Baliga, "Power semiconductor device figure of merit for high-frequency applications," IEEE Electron Device Lett, vol.10, pp.455 1989. DOI: 10.1109/55.43098
  5. E. Arnold and D. Alok, "Effect of interface states on electron transport in 4H-SiC inversion layers," IEEE Trans. Electron Devices, vol.48, pp. 1870, 2001. DOI: 10.1109/16.944171
  6. H. Yoshioka, J. Senzaki, A. Shimozato, Y. Tanaka, and H. Okumura, "N-channel field-effect mobility inversely proportional to the interface state density at the conduction band edges of SiO2/4H-SiC interfaces," AIP Adv, vol.5, pp. 017109, 2015. DOI: 10.1063/1.4905781
  7. T. Hatakeyama, Y. Kiuchi, M. Sometani, S. Harada, D. Okamoto, H. Yano, Y. Yonezawa, and H. Okumura, "Characterization of traps at nitrided SiO2/SiC interfaces near the conduction band edge by using Hall effect measurements," Appl. Phys. Express, vol.10, pp.046601, 2019. DOI: 10.7567/APEX.10.046601
  8. P. Jamet, S. Dimitrijev, and P. Tanner, "Effects of nitridation in gate oxides grown on 4H-SiC," J. Appl. Phys, vol.90, pp.5058, 2001. DOI: 10.1063/1.1412579
  9. G. Y. Chung et al., "Improved inversion channel mobility for 4H-SiC MOSFETs following high temperature anneals in nitric oxide." IEEE Electron Device Lett, vol.22, pp.176, 2001. DOI: 10.1109/55.915604
  10. L. A. Lipkin, M. K. Das, and J. W. Palmour, "N2O Processing Improves the 4H-SiC:SiO2 Interface," Mater. Sci. Forum, vol.389-393, pp.985, 2002. DOI: 10.4028/WWW.SCIENTIFIC.NET/MSF.389-393.985
  11. T. Kimoto, Y. Kanzaki, M. Noborio, H. Kawano, and H. Matsunami, "Interface Properties of Metal-Oxide-Semiconductor Structures on 4H-SiC{0001} and (1120) Formed by N2O Oxidation," Jpn. J. Appl. Phys, vol.44, pp.1213, 2005. DOI: 10.1143/JJAP.44.1213
  12. D. Okamoto, H. Yano, T. Hatayama, and T. Fuyuki, "Removal of near-interface traps at SiO2/4H-SiC (0001) interfaces by phosphorus incorporation," Appl. Phys. Lett, vol.96, pp.203508, 2010. DOI: 10.1063/1.3432404
  13. D. Okamoto, H. Yano, K. Hirata, T. Hatayama, and T. Fuyuki, "Improved Inversion Channel Mobility in 4H-SiC MOSFETs on Si Face Utilizing Phosphorus-Doped Gate Oxide," IEEE Electron Device Lett, vol.31, pp.710, 2010. DOI: 10.1109/LED.2010.2047239
  14. D. Okamoto, M. Sometani, S. Harada, R. Kosugi, Y. Yonezawa, and H. Yano, "Improved Channel Mobility in 4H-SiC MOSFETs by Boron Passivation," IEEE Electron Device Lett, vol.35, pp.1176, 2014. DOI: 10.1109/LED.2014.2362768
  15. F. Allerstam, H. O. Olafsson, G. Gudjonsson, D. Dochev, E. O. Sveinbjornsson, T. Rodle, and R. Jos, "A strong reduction in the density of near-interface traps at the SiO2/4H-SiC interface by sodium enhanced oxidation," J. Appl. Phys, vol.101, pp.124502, 2007. DOI: 10.1063/1.2745321
  16. B. R. Tuttle, S. Dhar, S.-H. Ryu, X. Zhu, J. R. Williams, L. C. Feldman, and S. T. Pantelides, "High electron mobility due to sodium ions in the gate oxide of SiC-metal-oxide-semiconductor field-effect transistors," J. Appl. Phys, vol.109, pp.023702, 2011. DOI: 10.1063/1.3533767
  17. D. J. Lichtenwalner, L. Cheng, S. Dhar, A. Agarwal, and J. W. Palmour, "High mobility 4H-SiC (0001) transistors using alkali and alkaline earth interface layers," Appl. Phys. Lett, vol.105, pp.182107, 2014. DOI: 10.1063/1.4901259
  18. R. H. Kikuchi and K. Kita, "Fabrication of SiO2/4H-SiC (0001) interface with nearly ideal capacitance-voltage characteristics by thermal oxidation," Appl. Phys. Lett, vol.105, pp.032106, 2014. DOI: 10.1063/1.4891166
  19. T. Hosoi, D. Nagai, M. Sometani, Y. Katsu, H. Takeda, T. Shimura, M. Takei, and H. Watanabe, "Ultrahigh-temperature rapid thermal oxidation of 4H-SiC(0001) surfaces and oxidation temperature dependence of SiO2/SiC interface properties," Appl. Phys. Lett, vol.109, pp.182114, 2016. DOI: 10.1063/1.4967002
  20. M. Sometani, D. Nagai, Y. Katsu, T. Hosoi, T. Shimura, M. Takei, Y. Yonezawa, and H. Watanabe, "Impact of rapid cooling process in ultrahigh-temperature oxidation of 4H-SiC(0001)," Jpn. J. Appl. Phys, vol.56, pp.04CR04, 2017. DOI: 10.7567/JJAP.56.04CR04
  21. T. Kobayashi, K. Tachiki, K. Ito, and T. Kimoto, "Reduction of interface state density in SiC (0001) MOS structures by low-oxygen-partial-pressure annealing," Appl. Phys. Express, vol.12, pp.031001, 2019. DOI: 10.7567/1882-0786/ab032b
  22. Kobayashi, Takuma, et al. "Design and formation of SiC (0001)/SiO2 interfaces via Si deposition followed by low-temperature oxidation and high-temperature nitridation," Applied Physics Express, vol.13, no.9, pp.091003, 2020. DOI: 10.35848/1882-0786/ababed
  23. Tachiki, Keita, and Tsunenobu Kimoto. "Improvement of Both n-and p-Channel Mobilities in 4H-SiC MOSFETs by High-Temperature N2 Annealing," IEEE Transactions on Electron Devices, vol.68, no.2, pp.638-644, 2020. DOI: 10.1109/TED.2020.3040207