References
- Kaluarachchi, T., and Wickramasinghe, M. (2023). A systematic literature review on automatic website generation. Journal of Computer Languages, 75. https://doi.org/10.1016/j.cola.2023.101202
- Lee, J.-S. (2003). Aspect-Oriented Programming and Subject-Oriented Programming. Korea Information Processing Society Review, Vol. 21, No. 9, pp. 94-101.
- Sivasubramanian, S., Szymaniak, M., Pierre, G., & Steen, M. v. (2004). Replication for web hosting systems. ACM Computing Surveys (CSUR), Vol. 36, No. 3, pp. 291-334. DOI : https://doi.org/10.1145/1035570.1035573
- Muhammad Garib, N. S. (2006). Online Website Builder for Non-Programmers.
- Bangboonrit, C. (2004). Site builder: build, market and manage business website with CMS.
- Xu, Y., Bo, L., Sun, X., Li, B., Jiang, J., & Zhou, W. (2021). image2emmet: Automatic code generation from web user interface image. Journal of Software: Evolution and Process, Vol. 33, No. 8, e2369, DOI : https://doi.org/10.1002/smr.2369
- Hashimoto, Y. and T. Igarashi (2005). Retrieving Web Page Layouts using Sketches to Support Example-based Web Design. SBM, DOI : http://dx.doi.org/10.2312/SBM/SBM05/155-164
- Chang, K. S.-P. and B. A. Myers (2012). WebCrystal: understanding and reusing examples in Web authoring. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. DOI : https://doi.org/10.1145/2207676.2208740
- Baule, D., von Wangenheim, C. G., von Wangenheim, A., Hauck, J. C., & Junior, E. C. V. (2021). Automatic code generation from sketches of mobile applications in end-user development using Deep Learning. arXiv preprint arXiv:2103.05704. DOI : https://doi.org/10.48550/arXiv.2103.05704
- Kaluarachchi, T. and M. Wickramasinghe (2023). "A systematic literature review on automatic Website generation." Journal of Computer Languages 75. DOI : https://doi.org/10.1016/j.cola.2023.101202
- Xi, C., and Chung, J. (2023). A Study on Character Design Using [Midjourney] Application. International Journal of Advanced Culture Technology, Vol. 11, No. 2, pp. 409-414. DOI : https://doi.org/10.17703/IJACT.2023.11.2.409
- McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A proposal for the dartmouth summer research project on artificial intelligence, august 31, 1955. AI magazine, Vol. 27, No. 4, pp. 12-12. DOI : https://doi.org/10.1609/aimag.v27i4.1904
- Hinton, G.E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural computation, Vol. 18, No. 7, 1527-1554. DOI : https://doi.org/10.1162/neco.2006.18.7.1527
- Cai, S., Bileschi, S., & Nielsen, E. (2020). Deep Learning with JavaScript: Neural networks in TensorFlow.js. Manning. https://books.google.co.kr/id=N2dswgEACAAJ
- Mahesh, B. (2020). Machine learning algorithms-a review. International Journal of Science and Research, Vol. 9, No. 1, pp. 381-386. DOI : https://doi.org/10.21275/ART20203995
- Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet classification with deep convolutional neural networks. Communications of the ACM, Vol. 60, No. 6, pp. 84-90. DOI : https://doi.org/10.1145/3065386
- Lozano-Diez, A., Zazo, R., Toledano, D. T., & Gonzalez-Rodriguez, J. (2017). An analysis of the influence of deep neural network (DNN) topology in bottleneck feature based language recognition. PloS one, Vol. 12, No. 8, e0182580. DOI : https://doi.org/10.1371/journal.pone.0182580
- Amanatullah. (2023). Vanishing Gradient Problem in Deep Learning: Understanding, Intuition, and Solutions. Retrieved from https://medium.com/@amanatulla1606
- He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). DOI: https://doi.org/10.1109/CVPR.2016.90
- Tan, M., and Le, Q. (2019, May). Efficientnet: Rethinking model scaling for convolutional neural networks. In International conference on machine learning (pp. 6105-6114). PMLR. DOI : https://doi.org/10.48550/arXiv.1905.11946
- Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 580-587). DOI : https://doi.org/10.48550/arXiv.1311.2524
- Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788). DOI : https://doi.org/10.1109/CVPR.2016.91
- Rath, S. (2023). YOLOv8 : Comprehensive Guide to State Of The Art Object Detection. https://learnopencv.com/ultralytics-yolov8/
- Hanjin Lee, Soyeon Kwon, & Daihwan Min (2021), The Empirical Research on the User Satisfaction of Mobile Grocery Shopping Customer Journey, Journal of Information Technology Applications & Management, Vol. 28, No. 4, pp. 59-78. DOI : https://doi.org/10.21219/jitam.2021.28.4.059
- Hyun-ju Kim, and Jinyoung Lee (2024). A Study on A Study on the University Education Plan Using ChatGPTfor University Students, The Journal of the Convergence on Culture Technology (JCCT), Vol. 10, No. 1, pp. 71-79. DOI : http://dx.doi.org/10.17703/JCCT.2024.10.1.71
- Hanjin Lee, Young-geun Park, & Daihwan Min, (2020). Analysis of Factors Affecting the Continuance Intention to Use Mobile Grocery Shopping. The Journal of Information Systems, 29(2), 95-110. DOI : https://doi.org/10.5859/KAIS.2020.29.2.95
- Suhyun Park, Yeeun Lee, & Hanjin Lee (2024). Research on Enhancing Customer Experience through AI-Supported Review Generation, The Transactions of the Korean Institute of Electrical Engineers, Vol. 73, No. 2, pp. 334-342. DOI : https://doi.org/10.5370/KIEE.2024.73.2.334
- Hyunjin Kim, Yeongjo Kim, Donghyeon Yun, & Hanjin Lee (2024). Empirical Research on the Interaction between Visual Art Creation and Artificial Intelligence Collaboration, The Journal of the Convergence on Culture Technology (JCCT), Vol. 10, No. 1, pp.517-524. DOI : http://dx.doi.org/10.17703/JCCT.2024.1.571