DOI QR코드

DOI QR Code

Method of Crosstalk Analysis for CO-ORMDM Systems

  • Kyung Hee Seo (Sogang Institute for Convergence Education, Sogang University) ;
  • Jae Seung Lee (Department of Electronic Engineering, Kwangwoon University)
  • Received : 2023.10.17
  • Accepted : 2024.03.14
  • Published : 2024.04.25

Abstract

Recently, a new kind of optical multiplexing called optical-receiver-mode (ORM)-division multiplexing (ORMDM) has been proposed, in which an optical channel is a linear sum of ORM subchannels modulated independently. Using coherent-optical (CO) techniques, it has been reported that COORMDM communication systems can have very high spectral efficiencies (SEs). To estimate the SEs of CO-ORMDM communication systems, we introduce a new method of crosstalk analysis. Using this method, we can allocate quadrature-amplitude-modulation (QAM) codes and QAM step sizes unevenly over ORM subchannels to obtain higher SEs. With 50 Gaussian ORMs, we obtain a SE of up to 15.29 bit s-1 Hz-1.

Keywords

Acknowledgement

This work was supported by the Research Grant of Kwangwoon University in 2023.

References

  1. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, "Capacity limits of optical fiber networks," J. Light. Technol. 28, 662-701 (2010). https://doi.org/10.1109/JLT.2009.2039464
  2. K. Kikuchi, "Fundamentals of coherent optical fiber communications," J. Light. Technol. 34, 157-179 (2016). https://doi.org/10.1109/JLT.2015.2463719
  3. W. Klaus, P. J. Winzer, and K. Nakajima, "The role of parallelism in the evolution of optical fiber communication systems," Proc. IEEE 110, 1619-1654 (2022). https://doi.org/10.1109/JPROC.2022.3207920
  4. B. J. Puttnam, R. S. Luis, G. Rademacher, M. Mendez-Astudillio, Y. Awaji, and H. Furukawa, "S-, C- and L-band transmission over a 157 nm bandwidth using doped fiber and distributed Raman amplification," Opt. Express 39, 10011-10018 (2022).
  5. A. Souza, B. Correia, A. Napoli, V. Curri, N. Costa, J. Pedro, and J. Pires, "Cost analysis of ultrawideband transmission in optical networks," J. Opt. Commun. Netw. 16, 81-93 (2024). https://doi.org/10.1364/JOCN.503723
  6. J. S. Lee, "Optical signals using superposition of optical receiver modes," Curr. Opt. Photonics 1, 308-314 (2017).
  7. B. Batsuren, K.-H. Seo, and J. S. Lee, "Optical communication using linear sums of optical receiver modes: Proof of concept," IEEE Photonics Technol. Lett. 30, 1707-1710 (2018). https://doi.org/10.1109/LPT.2018.2866513
  8. J. S. Lee, "Coherent optical receiver for real-time CO-ORMDM systems," Curr. Opt. Photonics 7, 15-20 (2023).
  9. J. S. Lee and C.-S. Shim, "Bit-error-rate analysis of optically preamplified receivers using an eigenfunction expansion method in optical frequency domain," J. Light. Technol. 12, 1224-1229 (1994). https://doi.org/10.1109/50.301815
  10. E. Forestieri, "Evaluating the error probability in lightwave systems with chromatic dispersion, arbitrary pulse shape and pre- and postdetection filtering," J. Light. Technol. 18, 1493-1503 (2000). https://doi.org/10.1109/50.896209
  11. R. Holzlohner, V. S. Grigoryan, C. R. Menyuk, and W. L. Kath, "Accurate calculation of eye diagrams and bit error rates in optical transmission systems using linearization," J. Light. Technol. 20, 389-400 (2002). https://doi.org/10.1109/50.988987
  12. J. S. Lee and A. E. Willner, "Analysis of Gaussian optical receivers," J. Light. Technol. 31, 2687-2693 (2013). https://doi.org/10.1109/JLT.2013.2272333
  13. I. B. Djordjevic and B. Vasic, "Orthogonal frequency division multiplexing for high-speed optical transmission," Opt. Express 14, 3767-3775 (2006). https://doi.org/10.1364/OE.14.003767
  14. D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, "101.7-Tb/s (370×294-Gb/s) PDM-128QAM-OFDM transmission over 3×55-km SSMF using pilot-based Phase noise mitigation," in Optical Fiber Communication Conference 2011 (Optica Publishing Group, 2011), paper PDPB5.
  15. T. Omiya, M. Yoshida, and M. Nakazawa, "400 Gbit/s 256 QAM-OFDM transmission over 720 km with a 14 bit/s/Hz spectral efficiency by using high-resolution FDE," Opt. Express 21, 2632-2641 (2013). https://doi.org/10.1364/OE.21.002632
  16. L. D. Tzeng, W. L. Emkey, C. A. Jack, and C. A. Burrus, "Polarization-insensitive coherent receiver using a double balanced optical hybrid system," Electron. Lett. 23, 1195-1196 (1987). https://doi.org/10.1049/el:19870831
  17. P. J. Winzer, "High-spectral-efficiency optical modulation formats," J. Light. Technol. 30, 3824-3835 (2012). https://doi.org/10.1109/JLT.2012.2212180
  18. M. Mazur, J. Schroder, A. Lorences-Riesgo, T. Yoshida, M. Karlsson, and P. A. Andrekson, "12 b/s/Hz spectral efficiency over the C-band based on comb-based superchannels," J. Light. Technol. 37, 411-417 (2019). https://doi.org/10.1109/JLT.2018.2880249
  19. A. Matsushita, M. Nakamura, F. Hamaoka, S. Okamoto, and Y. Kisaka, "High-spectral-efficiency 600-Gbps/carrier transmission using PDM-256QAM format," J. Light. Technol. 37, 470-476 (2019). https://doi.org/10.1109/JLT.2018.2890124
  20. M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C.-S. Bres, L. Thevenaz, and T. Schneider, "Optical sinc-shaped Nyquist pulses of exceptional quality," Nat. Commun. 4, (2013).
  21. S. Y. Kim, K. H. Seo, and J. S. Lee, "Spectral efficiencies of channel-interleaved bidirectional and unidirectional ultradense WDM for metro applications," J. Light. Technol. 30, 229-233 (2012). https://doi.org/10.1109/JLT.2011.2180697
  22. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 6th ed. (Academic Press, USA, 2000).
  23. G. B. Arfken, H. J. Weber, and F. E. Harris, Mathematical Methods for Physicists, 7th ed. (Elsevier Academic, New York, USA, 2013).