DOI QR코드

DOI QR Code

Development of a Raman Lidar System Using the Photon-counting Method to Measure Carbon Dioxide

이산화탄소 원격 계측을 위한 광 계수 방식의 라만 라이다 장치 개발

  • Sun Ho Park (Department of Data Information and Physics, Kongju National University) ;
  • In Young Choi (Space and Ground Business Department, Space Ground 3 Team, Soletop Ltd.) ;
  • Moon Sang Yoon (Space and Ground Business Department, Space Ground 3 Team, Soletop Ltd.)
  • 박선호 (공주대학교 데이터정보물리학과) ;
  • 최인영 ((주)솔탑 우주지상사업부 우주지상 3팀) ;
  • 윤문상 ((주)솔탑 우주지상사업부 우주지상 3팀)
  • Received : 2024.01.09
  • Accepted : 2024.02.07
  • Published : 2024.04.25

Abstract

We developed a Raman lidar system for remote measurement of carbon dioxide present in atmospheric space. An air-cooled laser with 355-nm wavelength and a 6-inch optical receiver was used to miniaturize the Raman lidar system, and a scanning Raman lidar system was developed using a two-axis scanning device and a photon counter. To verify the performance of the developed Raman lidar system, a gas chamber capable of maintaining a concentration was located at a distance of about 87 m, and the change in Raman signal according to the change in the concentration of carbon dioxide was measured. As a result, it was confirmed that the change in the Raman scattering signal of carbon dioxide that appeared for a change in carbon dioxide concentration from about 0.67 to 40 vol% was linear, and the coefficient of determination (R2) value, which indicates the correlation between the carbon dioxide concentration and Raman scattering signal, showed a high linearity of 0.9999.

이산화탄소 원격 계측을 위한 라만 라이다 장치를 개발하기 위해 라만 라이다 장치의 소형화를 진행하고, 이에 스캐닝 장치를 결합하여 라만 라이다 시스템을 개발하였다. 개발한 시스템의 성능 검증을 위하여 가스 챔버를 약 87 m 거리에 위치시킨 후, 이산화탄소의 농도 변화에 따른 라만 산란 신호를 계측하였다. 그 결과 개발된 라만 라이다 장치를 이용하였을 때 약 0.67-40 vol% 사이의 농도에서 높은 선형성을 나타냄을 확인하였다.

Keywords

Acknowledgement

본 연구는 2022년도 중소벤처기업부의 기술개발사업지원(S3289298)의 지원을 받아 수행되었습니다.

References

  1. R. N. Verem'ev, V. E. Privalov, and V. G. Shemanin, "Optimization of a semiconductor lidar for detecting atmospheric molecular iodine and hydrogen," Tech. Phys. 45, 636-640 (2000).  https://doi.org/10.1134/1.1259691
  2. E. I. Voronina, V. E. Privalov, and V. G. Shemanin, "Proving hydrogen molecules with a laboratory Raman lidar," Tech. Phys. Lett. 30, 178-179 (2004).  https://doi.org/10.1134/1.1707159
  3. A. J. Ball, "Investigation of gaseous hydrogen leak detection using Raman scattering and laser induced breakdown spectroscopy," M. S. Thesis, University of Florida, USA (2005). 
  4. R. Zalosh and N. Barilo, "Wide area and distributed hydrogen sensors," in Proc. International Conference on Hydrogen Safety (Ajaccio, Corsica, France, Sep. 16-18, 2009). 
  5. H. Nynomiya, S. Yeashima, and K. Ickawa, "Raman lidar system for hydrogen gas detection," Opt. Eng. 46, 094301 (2007). 
  6. Y. Noguchi, T. Shiina, K. Noguchi, T. Fukuchi, H. Ninomiya, I. Asahi, S. Sugimoto, and Y. Shimamoto, "Detection of low concentration hydrogen gas by compact Raman lidar," in Proc. Conference on Lasers and Electro-Optics/Pacific Rim 2011 (Sydney, Australia, Aug. 28-Sep. 1, 2011), paper C530. 
  7. I. Asahi, S. Sugimoto, H. Ninomiya, T. Fukuchi, and T. Shiina, "Remote sensing of hydrogen gas concentration distribution by Raman lidar," Proc. SPIE 8526, 85260X (2012). 
  8. I. Y. Choi, S. H. Baik, N. G. Park, H. Y. Kang, J. H. Kim, and N. J. Lee, "Development of a Raman lidar system for remote monitoring of hydrogen gas," Korean J. Opt. Photonics 28, 166-171 (2017). 
  9. I. Y. Choi, S. H. Baik, J. Y. Lim, J. H. Cha, and J. H. Kim, "Development of on-axis Raman lidar system for remotely measuring hydrogen gas at long distance," Korean J. Opt. Photonics 29, 119-125 (2018). 
  10. J. Egermann, T. Seeger, and A. Leipertz, "Applitcation of 266-nm and 355-nm Nd:YAG laser radiation for the investigation of fuel-rich sooting hydrocarbon flame by Raman scattering," Appl. Opt. 43, 5564-5574 (2004). https://doi.org/10.1364/AO.43.005564