DOI QR코드

DOI QR Code

Study of Light-induced Effect on Silicon Solar Cell from Wafer to Cell: A Review

광조사에 의한 실리콘 태양전지 열화 연구

  • MyeongSeob Sim (Department of Material Science Engineering, Korea University) ;
  • Dongjin Choi (Graduate School of Energy and Environment (KU-KIST Green School), Korea University) ;
  • Myeongji Woo (Department of Material Science Engineering, Korea University) ;
  • Ji Woo Sohn (Department of Material Science Engineering, Korea University) ;
  • Youngho Choe (Graduate School of Energy and Environment (KU-KIST Green School), Korea University) ;
  • Donghwan Kim (Department of Material Science Engineering, Korea University)
  • 심명섭 (신소재공학과, 고려대학교) ;
  • 최동진 (에너지기술공동연구소, 고려대학교) ;
  • 우명지 (신소재공학과, 고려대학교) ;
  • 손지우 (신소재공학과, 고려대학교) ;
  • 최영호 (에너지기술공동연구소, 고려대학교) ;
  • 김동환 (신소재공학과, 고려대학교)
  • Received : 2024.02.07
  • Accepted : 2024.03.15
  • Published : 2024.03.31

Abstract

The efficiency of silicon solar cells is approaching a theoretical limit referred to as 'the state of the art'. Consequently, maintaining efficiency is more productive than pursuing improvements the last room for limiting efficiency. One of the primary considerations in silicon module conservation is the occurrence of failures and degradation. Degradation can be mitigated during the cell manufacturing stage, unlike physical and spontaneous failure. It is mostly because the chemical reaction is triggered by the carrier generation of thermal and light injection, an inherent aspect of the solar cell environment. Therefore, numerous researchers and cell manufacturers are engaged in implementing mitigation strategies based on the physical degradation mechanism.

Keywords

Acknowledgement

본 연구는 2024년도 산업통상자원부의 재원으로 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다(No. RS-2023-00236715).

References

  1. M. Schmela, Global market outloolk. (2023).
  2. A. Richter, M. Hermle, S. W. Glunz, Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells. IEEE Journal of Photovoltaics 3, 1184-1191 (2013). https://doi.org/10.1109/JPHOTOV.2013.2270351
  3. NREL Best Research-Cell Efficiency Chart.
  4. D. L. Staebler, C. R. Wronski, Reversible conductivity changes in discharge-produced amorphous Si. Applied Physics Letters 31, 292-294 (1977). https://doi.org/10.1063/1.89674
  5. H. Dersch, J. Stuke, J. Beichler, Light-induced dangling bonds in hydrogenated amorphous silicon. Applied Physics Letters 38, 456-458 (1981). https://doi.org/10.1063/1.92402
  6. M. Stutzmann, W. B. Jackson, C. C. Tsai, Light-induced metastable defects in hydrogenated amorphous silicon: A systematic study. Physical Review B 32, 23-47 (1985). https://doi.org/10.1103/PhysRevB.32.23
  7. M. Ohsawa et al., The Role of Hydrogen in the Staebler-Wronski Effect of a-Si:H. Japanese Journal of Applied Physics 24, L838 (1985).
  8. X. Cheng, E. S. Marstein, C. C. You, H. Haug, M. D. Sabatino, Temporal stability of a-Si:H and a-SiNx:H on crystalline silicon wafers. Energy Procedia 124, 275-281 (2017). https://doi.org/10.1016/j.egypro.2017.09.299
  9. De Wolf, S., et al. "Very fast light-induced degradation of a-Si:H/c-Si(100) interfaces." Physical Review B 83(23): 233301 (2011).
  10. E. M. El Mhamdi, J. Holovsky, B. Demaurex, C. Ballif, S. De Wolf, Is light-induced degradation of a-Si:H/c-Si interfaces reversible? Applied Physics Letters 104, 252108 (2014).
  11. R. L. Crabb, Photon Induced Degradation of Electron and Proton Irradiated Silicon Solar Cells. IEEE Transactions on Nuclear Science 20, 243-249 (1973). https://doi.org/10.1109/TNS.1973.4327402
  12. H. Hashigami, Y. Itakura, T. Saitoh, Effect of illumination conditions on Czochralski-grown silicon solar cell degradation. Journal of Applied Physics 93, 4240-4245 (2003). https://doi.org/10.1063/1.1559430
  13. Soomin Kim et al., An Analysis of Light Induced Degradation with Optical Source Properties in Boron-Doped P-Type Cz-Si Solar Cells. Korean Journal of Materials Research 24, 305~309- 305~309 (2014). https://doi.org/10.3740/MRSK.2014.24.6.305
  14. K. Bothe, R. Hezel, J. Schmidt, Recombination-enhanced formation of the metastable boron-oxygen complex in crystalline silicon. Applied Physics Letters 83, 1125-1127 (2003). https://doi.org/10.1063/1.1600837
  15. T. Saitoh, A review of Japanese R&D for crystalline silicon solar cells. 9, 81-86 (1999).
  16. S. R. S. W. Glunz, J. Knobloch, W. Wettling, T. Abe, Comparison of boron- and gallium-doped p-type Czochralski silicon for photovoltaic application. Progress in Photovoltaic 7 (2000).
  17. J. Schmidt, A. G. Aberle, R. J. C. R. o. t. T. S. I. P. S. C.-. Hezel, Investigation of carrier lifetime instabilities in Cz-grown silicon. 13-18 (1997).
  18. T. Schutz-Kuchly, J. Veirman, S. Dubois, D. R. Heslinga, Light-Induced-Degradation effects in boron-phosphorus compensated n-type Czochralski silicon. Applied Physics Letters 96 (2010).
  19. W. B. Henley, D. A. Ramappa, L. Jastrezbski, Detection of copper contamination in silicon by surface photovoltage diffusion length measurements. Applied Physics Letters 74, 278-280 (1999). https://doi.org/10.1063/1.123280
  20. A. Herguth, G. Schubert, M. Kaes, G. Hahn, Investigations on the long time behavior of the metastable boron-oxygen complex in crystalline silicon. Progress in Photovoltaics: Research and Applications 16, 135-140 (2008). https://doi.org/10.1002/pip.779
  21. Bothe, K., Sinton, R., Schmidt, J., 2005. Fundamental boron-oxygen-related carrier lifetime limit in mono- and multicrystalline silicon. Progress in Photovoltaics: Research and Applications 13, 287-296. https://doi.org/10.1002/pip.586
  22. J. Schmidt, K. Bothe, Structure and transformation of the metastable boron- and oxygen-related defect center in crystalline silicon. Physical Review B 69 (2004).
  23. J. Schmidt, K. Bothe, R. Hezel, Oxygen-related minority-carrier trapping centers in p-type Czochralski silicon. Applied Physics Letters 80, 4395-4397 (2002). https://doi.org/10.1063/1.1483908
  24. K. Bothe, J. Schmidt, Electronically activated boron-oxygen-related recombination centers in crystalline silicon. Journal of Applied Physics 99, 013701 (2006).
  25. K. Bothe, R. Sinton, J. Schmidt, Fundamental boron-oxygen-related carrier lifetime limit in mono- and multicrystalline silicon. Progress in Photovoltaics: Research and Applications 13, 287-296 (2005). https://doi.org/10.1002/pip.586
  26. S. W. Glunz, S. Rein, W. Warta, J. Knobloch, W. Wettling, Degradation of carrier lifetime in Cz silicon solar cells. Solar Energy Materials and Solar Cells 65, 219-229 (2001). https://doi.org/10.1016/S0927-0248(00)00098-2
  27. J. Adey, R. Jones, D. W. Palmer, P. R. Briddon, S. Oberg, Degradation of Boron-Doped Czochralski-Grown Silicon Solar Cells. Physical Review Letters 93, 055504 (2004).
  28. H. M. B. Mao-Hua Du, Richard S.Crandall and S.B.Zhang, A New Mechanism for Non-Radiative Recombination at Light-Induced Boron-Oxygen Complexes in Silicon. DOE solar energy Technologies program review meeting, (2005).
  29. J. Schmidt, A. Cuevas, Electronic properties of light-induced recombination centers in boron-doped Czochralski silicon. Journal of Applied Physics 86, 3175-3180 (1999). https://doi.org/10.1063/1.371186
  30. S. W. Glunz, S. Rein, J. Knobloch, W. Wettling, T. Abe, Comparison of boron- and gallium-doped p-type Czochralski silicon for photovoltaic application. Progress in Photovoltaics: Research and Applications 7, 463-469 (1999). https://doi.org/10.1002/(SICI)1099-159X(199911/12)7:6<463::AID-PIP293>3.0.CO;2-H
  31. J. Zhao, A. Wang, M. A. Green, Performance degradation in CZ(B) cells and improved stability high efficiency PERT and PERL silicon cells on a variety of SEH MCZ(B), FZ(B) and CZ(Ga) substrates. Progress in Photovoltaics: Research and Applications 8, 549-558 (2000). https://doi.org/10.1002/1099-159X(200009/10)8:5<549::AID-PIP346>3.0.CO;2-Y
  32. G. Krugel, W. Wolke, J. Geilker, S. Rein, R. Preu, Impact of Hydrogen Concentration on the Regeneration of Light Induced Degradation. Energy Procedia 8, 47-51 (2011). https://doi.org/10.1016/j.egypro.2011.06.100
  33. K. Ramspeck et al., in Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition. (2012).
  34. F. Kersten et al. (IEEE).
  35. F. Kersten et al., Degradation of multi-crystalline silicon solar cells and modules after illumination at elevated temperature. Solar Energy Materials and Solar Cells 142, 83-86 (2015). https://doi.org/10.1016/j.solmat.2015.06.015
  36. C. Chan et al., Modulation of Carrier-Induced Defect Kinetics in Multi-Crystalline Silicon PERC Cells Through Dark Annealing. Solar RRL 1, 1600028 (2017).
  37. S. Liu et al., Impact of Dark Annealing on the Kinetics of Light- and Elevated-Temperature-Induced Degradation. IEEE Journal of Photovoltaics 8, 1494-1502 (2018). https://doi.org/10.1109/JPHOTOV.2018.2866325
  38. H. C. Sio et al., The Role of Dark Annealing in Light and Elevated Temperature Induced Degradation in p-Type Mono-Like Silicon. IEEE Journal of Photovoltaics 10, 992-1000 (2020). https://doi.org/10.1109/JPHOTOV.2020.2993653
  39. D. Sperber, A. Graf, D. Skorka, A. Herguth, G. Hahn, Degradation of Surface Passivation on Crystalline Silicon and Its Impact on Light-Induced Degradation Experiments. IEEE Journal of Photovoltaics 7, 1627-1634 (2017).  https://doi.org/10.1109/JPHOTOV.2017.2755072
  40. K. Petter et al., Dependence of LeTID on brick height for different wafer suppliers with several resistivities and dopants. 6, 1-17 (2016).
  41. C. E. Chan et al., Rapid Stabilization of High-Performance Multicrystalline P-type Silicon PERC Cells. IEEE Journal of Photovoltaics 6, 1473-1479 (2016). https://doi.org/10.1109/JPHOTOV.2016.2606704
  42. A. Zuschlag, D. Skorka, G. Hahn, Degradation and regeneration in mc-Si after different gettering steps. Progress in Photovoltaics: Research and Applications 25, 545-552 (2017). https://doi.org/10.1002/pip.2832
  43. W. Liu et al., Light-induced activation of boron doping in hydrogenated amorphous silicon for over 25% efficiency silicon solar cells. Nature Energy 7, 427-437 (2022). https://doi.org/10.1038/s41560-022-01018-5
  44. T. Niewelt et al., Light-induced activation and deactivation of bulk defects in boron-doped float-zone silicon. Journal of Applied Physics 121, 185702 (2017).
  45. T. Niewelt, W. Kwapil, M. Selinger, A. Richter, M. C. Schubert, Long-Term Stability of Aluminum Oxide Based Surface Passivation Schemes Under Illumination at Elevated Temperatures. IEEE Journal of Photovoltaics 7, 1197-1202 (2017). https://doi.org/10.1109/JPHOTOV.2017.2713411
  46. U. Varshney et al., Evaluating the Impact of SiNx Thickness on Lifetime Degradation in Silicon. IEEE Journal of Photovoltaics 9, 601-607 (2019). https://doi.org/10.1109/JPHOTOV.2019.2896671
  47. S. Jafari, U. Varshney, B. Hoex, S. Meyer, D. Lausch, Understanding Light- and Elevated Temperature-Induced Degradation in Silicon Wafers Using Hydrogen Effusion Mass Spectroscopy. IEEE Journal of Photovoltaics 11, 1363-1369 (2021). https://doi.org/10.1109/JPHOTOV.2021.3104194
  48. F. Kersten, J. Heitmann, J. W. Muller, Influence of Al2O3 and SiNx Passivation Layers on LeTID. Energy Procedia 92, 828-832 (2016). https://doi.org/10.1016/j.egypro.2016.07.079
  49. U. Varshney et al., Controlling Light- and Elevated-Temperature-Induced Degradation With Thin Film Barrier Layers. IEEE Journal of Photovoltaics 10, 19-27 (2020). https://doi.org/10.1109/JPHOTOV.2019.2945199
  50. D. S. Alona Otaegi), Andreas Schmid, Annika Zuschlag, Juan Carlos Jimeno, Giso Hahn, INFLUENCE OF EMITTER LAYERS ON LETID KINETICS IN MULTICRYSTALLINE SILICON. EUPVSEC 35th, 293-297 (2018).
  51. D. Bredemeier, D. C. Walter, J. Schmidt, Possible Candidates for Impurities in mc-Si Wafers Responsible for Light-Induced Lifetime Degradation and Regeneration. Solar RRL 2, 1700159 (2018).
  52. T. Niewelt et al., Understanding the light-induced degradation at elevated temperatures: Similarities between multicrystalline and floatzone p-type silicon. Progress in Photovoltaics: Research and Applications 26, 533-542 (2018). https://doi.org/10.1002/pip.2954
  53. A. C. N. Wenham et al. (IEEE).
  54. J. Schmidt, D. Bredemeier, D. C. Walter, On the Defect Physics Behind Light and Elevated Temperature-Induced Degradation (LeTID) of Multicrystalline Silicon Solar Cells. IEEE Journal of Photovoltaics 9, 1497-1503 (2019). https://doi.org/10.1109/JPHOTOV.2019.2937223
  55. D. Chen et al., Hydrogen induced degradation: A possible mechanism for light- and elevated temperature- induced degradation in n-type silicon. Solar Energy Materials and Solar Cells 185, 174-182 (2018). https://doi.org/10.1016/j.solmat.2018.05.034
  56. C. Herring, N. M. Johnson, C. G. Van De Walle, Energy levels of isolated interstitial hydrogen in silicon. Physical Review B 64, (2001).
  57. E. Kobayashi et al., Light-induced performance increase of silicon heterojunction solar cells. Applied Physics Letters 109, 153503 (2016).
  58. E. Kobayashi et al., Increasing the efficiency of silicon heterojunction solar cells and modules by light soaking. Solar Energy Materials and Solar Cells 173, 43-49 (2017). https://doi.org/10.1016/j.solmat.2017.06.023
  59. L. Yang, X. Li, W. Zhang, Q. Yang, Q. Wang, On the Kinetics of Light-Induced Enhancement Effect in Silicon Heterojunction Solar Cells. physica status solidi (RRL) - Rapid Research Letters 17, 2200356 (2023).
  60. Kim, S. M., et al., "Light-induced degradation and metastable-state recovery with reaction kinetics modeling in boron-doped Czochralski silicon solar cells." Applied Physics Letters 105(8): 083509. (2014).
  61. A. Herguth and G. Hahn, Journal of Applied Physics 108, 114509 (2010).