Acknowledgement
본 연구는 2024년도 산업통상자원부의 재원으로 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다(No. RS-2023-00236715).
References
- M. Schmela, Global market outloolk. (2023).
- A. Richter, M. Hermle, S. W. Glunz, Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells. IEEE Journal of Photovoltaics 3, 1184-1191 (2013). https://doi.org/10.1109/JPHOTOV.2013.2270351
- NREL Best Research-Cell Efficiency Chart.
- D. L. Staebler, C. R. Wronski, Reversible conductivity changes in discharge-produced amorphous Si. Applied Physics Letters 31, 292-294 (1977). https://doi.org/10.1063/1.89674
- H. Dersch, J. Stuke, J. Beichler, Light-induced dangling bonds in hydrogenated amorphous silicon. Applied Physics Letters 38, 456-458 (1981). https://doi.org/10.1063/1.92402
- M. Stutzmann, W. B. Jackson, C. C. Tsai, Light-induced metastable defects in hydrogenated amorphous silicon: A systematic study. Physical Review B 32, 23-47 (1985). https://doi.org/10.1103/PhysRevB.32.23
- M. Ohsawa et al., The Role of Hydrogen in the Staebler-Wronski Effect of a-Si:H. Japanese Journal of Applied Physics 24, L838 (1985).
- X. Cheng, E. S. Marstein, C. C. You, H. Haug, M. D. Sabatino, Temporal stability of a-Si:H and a-SiNx:H on crystalline silicon wafers. Energy Procedia 124, 275-281 (2017). https://doi.org/10.1016/j.egypro.2017.09.299
- De Wolf, S., et al. "Very fast light-induced degradation of a-Si:H/c-Si(100) interfaces." Physical Review B 83(23): 233301 (2011).
- E. M. El Mhamdi, J. Holovsky, B. Demaurex, C. Ballif, S. De Wolf, Is light-induced degradation of a-Si:H/c-Si interfaces reversible? Applied Physics Letters 104, 252108 (2014).
- R. L. Crabb, Photon Induced Degradation of Electron and Proton Irradiated Silicon Solar Cells. IEEE Transactions on Nuclear Science 20, 243-249 (1973). https://doi.org/10.1109/TNS.1973.4327402
- H. Hashigami, Y. Itakura, T. Saitoh, Effect of illumination conditions on Czochralski-grown silicon solar cell degradation. Journal of Applied Physics 93, 4240-4245 (2003). https://doi.org/10.1063/1.1559430
- Soomin Kim et al., An Analysis of Light Induced Degradation with Optical Source Properties in Boron-Doped P-Type Cz-Si Solar Cells. Korean Journal of Materials Research 24, 305~309- 305~309 (2014). https://doi.org/10.3740/MRSK.2014.24.6.305
- K. Bothe, R. Hezel, J. Schmidt, Recombination-enhanced formation of the metastable boron-oxygen complex in crystalline silicon. Applied Physics Letters 83, 1125-1127 (2003). https://doi.org/10.1063/1.1600837
- T. Saitoh, A review of Japanese R&D for crystalline silicon solar cells. 9, 81-86 (1999).
- S. R. S. W. Glunz, J. Knobloch, W. Wettling, T. Abe, Comparison of boron- and gallium-doped p-type Czochralski silicon for photovoltaic application. Progress in Photovoltaic 7 (2000).
- J. Schmidt, A. G. Aberle, R. J. C. R. o. t. T. S. I. P. S. C.-. Hezel, Investigation of carrier lifetime instabilities in Cz-grown silicon. 13-18 (1997).
- T. Schutz-Kuchly, J. Veirman, S. Dubois, D. R. Heslinga, Light-Induced-Degradation effects in boron-phosphorus compensated n-type Czochralski silicon. Applied Physics Letters 96 (2010).
- W. B. Henley, D. A. Ramappa, L. Jastrezbski, Detection of copper contamination in silicon by surface photovoltage diffusion length measurements. Applied Physics Letters 74, 278-280 (1999). https://doi.org/10.1063/1.123280
- A. Herguth, G. Schubert, M. Kaes, G. Hahn, Investigations on the long time behavior of the metastable boron-oxygen complex in crystalline silicon. Progress in Photovoltaics: Research and Applications 16, 135-140 (2008). https://doi.org/10.1002/pip.779
- Bothe, K., Sinton, R., Schmidt, J., 2005. Fundamental boron-oxygen-related carrier lifetime limit in mono- and multicrystalline silicon. Progress in Photovoltaics: Research and Applications 13, 287-296. https://doi.org/10.1002/pip.586
- J. Schmidt, K. Bothe, Structure and transformation of the metastable boron- and oxygen-related defect center in crystalline silicon. Physical Review B 69 (2004).
- J. Schmidt, K. Bothe, R. Hezel, Oxygen-related minority-carrier trapping centers in p-type Czochralski silicon. Applied Physics Letters 80, 4395-4397 (2002). https://doi.org/10.1063/1.1483908
- K. Bothe, J. Schmidt, Electronically activated boron-oxygen-related recombination centers in crystalline silicon. Journal of Applied Physics 99, 013701 (2006).
- K. Bothe, R. Sinton, J. Schmidt, Fundamental boron-oxygen-related carrier lifetime limit in mono- and multicrystalline silicon. Progress in Photovoltaics: Research and Applications 13, 287-296 (2005). https://doi.org/10.1002/pip.586
- S. W. Glunz, S. Rein, W. Warta, J. Knobloch, W. Wettling, Degradation of carrier lifetime in Cz silicon solar cells. Solar Energy Materials and Solar Cells 65, 219-229 (2001). https://doi.org/10.1016/S0927-0248(00)00098-2
- J. Adey, R. Jones, D. W. Palmer, P. R. Briddon, S. Oberg, Degradation of Boron-Doped Czochralski-Grown Silicon Solar Cells. Physical Review Letters 93, 055504 (2004).
- H. M. B. Mao-Hua Du, Richard S.Crandall and S.B.Zhang, A New Mechanism for Non-Radiative Recombination at Light-Induced Boron-Oxygen Complexes in Silicon. DOE solar energy Technologies program review meeting, (2005).
- J. Schmidt, A. Cuevas, Electronic properties of light-induced recombination centers in boron-doped Czochralski silicon. Journal of Applied Physics 86, 3175-3180 (1999). https://doi.org/10.1063/1.371186
- S. W. Glunz, S. Rein, J. Knobloch, W. Wettling, T. Abe, Comparison of boron- and gallium-doped p-type Czochralski silicon for photovoltaic application. Progress in Photovoltaics: Research and Applications 7, 463-469 (1999). https://doi.org/10.1002/(SICI)1099-159X(199911/12)7:6<463::AID-PIP293>3.0.CO;2-H
- J. Zhao, A. Wang, M. A. Green, Performance degradation in CZ(B) cells and improved stability high efficiency PERT and PERL silicon cells on a variety of SEH MCZ(B), FZ(B) and CZ(Ga) substrates. Progress in Photovoltaics: Research and Applications 8, 549-558 (2000). https://doi.org/10.1002/1099-159X(200009/10)8:5<549::AID-PIP346>3.0.CO;2-Y
- G. Krugel, W. Wolke, J. Geilker, S. Rein, R. Preu, Impact of Hydrogen Concentration on the Regeneration of Light Induced Degradation. Energy Procedia 8, 47-51 (2011). https://doi.org/10.1016/j.egypro.2011.06.100
- K. Ramspeck et al., in Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition. (2012).
- F. Kersten et al. (IEEE).
- F. Kersten et al., Degradation of multi-crystalline silicon solar cells and modules after illumination at elevated temperature. Solar Energy Materials and Solar Cells 142, 83-86 (2015). https://doi.org/10.1016/j.solmat.2015.06.015
- C. Chan et al., Modulation of Carrier-Induced Defect Kinetics in Multi-Crystalline Silicon PERC Cells Through Dark Annealing. Solar RRL 1, 1600028 (2017).
- S. Liu et al., Impact of Dark Annealing on the Kinetics of Light- and Elevated-Temperature-Induced Degradation. IEEE Journal of Photovoltaics 8, 1494-1502 (2018). https://doi.org/10.1109/JPHOTOV.2018.2866325
- H. C. Sio et al., The Role of Dark Annealing in Light and Elevated Temperature Induced Degradation in p-Type Mono-Like Silicon. IEEE Journal of Photovoltaics 10, 992-1000 (2020). https://doi.org/10.1109/JPHOTOV.2020.2993653
- D. Sperber, A. Graf, D. Skorka, A. Herguth, G. Hahn, Degradation of Surface Passivation on Crystalline Silicon and Its Impact on Light-Induced Degradation Experiments. IEEE Journal of Photovoltaics 7, 1627-1634 (2017). https://doi.org/10.1109/JPHOTOV.2017.2755072
- K. Petter et al., Dependence of LeTID on brick height for different wafer suppliers with several resistivities and dopants. 6, 1-17 (2016).
- C. E. Chan et al., Rapid Stabilization of High-Performance Multicrystalline P-type Silicon PERC Cells. IEEE Journal of Photovoltaics 6, 1473-1479 (2016). https://doi.org/10.1109/JPHOTOV.2016.2606704
- A. Zuschlag, D. Skorka, G. Hahn, Degradation and regeneration in mc-Si after different gettering steps. Progress in Photovoltaics: Research and Applications 25, 545-552 (2017). https://doi.org/10.1002/pip.2832
- W. Liu et al., Light-induced activation of boron doping in hydrogenated amorphous silicon for over 25% efficiency silicon solar cells. Nature Energy 7, 427-437 (2022). https://doi.org/10.1038/s41560-022-01018-5
- T. Niewelt et al., Light-induced activation and deactivation of bulk defects in boron-doped float-zone silicon. Journal of Applied Physics 121, 185702 (2017).
- T. Niewelt, W. Kwapil, M. Selinger, A. Richter, M. C. Schubert, Long-Term Stability of Aluminum Oxide Based Surface Passivation Schemes Under Illumination at Elevated Temperatures. IEEE Journal of Photovoltaics 7, 1197-1202 (2017). https://doi.org/10.1109/JPHOTOV.2017.2713411
- U. Varshney et al., Evaluating the Impact of SiNx Thickness on Lifetime Degradation in Silicon. IEEE Journal of Photovoltaics 9, 601-607 (2019). https://doi.org/10.1109/JPHOTOV.2019.2896671
- S. Jafari, U. Varshney, B. Hoex, S. Meyer, D. Lausch, Understanding Light- and Elevated Temperature-Induced Degradation in Silicon Wafers Using Hydrogen Effusion Mass Spectroscopy. IEEE Journal of Photovoltaics 11, 1363-1369 (2021). https://doi.org/10.1109/JPHOTOV.2021.3104194
- F. Kersten, J. Heitmann, J. W. Muller, Influence of Al2O3 and SiNx Passivation Layers on LeTID. Energy Procedia 92, 828-832 (2016). https://doi.org/10.1016/j.egypro.2016.07.079
- U. Varshney et al., Controlling Light- and Elevated-Temperature-Induced Degradation With Thin Film Barrier Layers. IEEE Journal of Photovoltaics 10, 19-27 (2020). https://doi.org/10.1109/JPHOTOV.2019.2945199
- D. S. Alona Otaegi), Andreas Schmid, Annika Zuschlag, Juan Carlos Jimeno, Giso Hahn, INFLUENCE OF EMITTER LAYERS ON LETID KINETICS IN MULTICRYSTALLINE SILICON. EUPVSEC 35th, 293-297 (2018).
- D. Bredemeier, D. C. Walter, J. Schmidt, Possible Candidates for Impurities in mc-Si Wafers Responsible for Light-Induced Lifetime Degradation and Regeneration. Solar RRL 2, 1700159 (2018).
- T. Niewelt et al., Understanding the light-induced degradation at elevated temperatures: Similarities between multicrystalline and floatzone p-type silicon. Progress in Photovoltaics: Research and Applications 26, 533-542 (2018). https://doi.org/10.1002/pip.2954
- A. C. N. Wenham et al. (IEEE).
- J. Schmidt, D. Bredemeier, D. C. Walter, On the Defect Physics Behind Light and Elevated Temperature-Induced Degradation (LeTID) of Multicrystalline Silicon Solar Cells. IEEE Journal of Photovoltaics 9, 1497-1503 (2019). https://doi.org/10.1109/JPHOTOV.2019.2937223
- D. Chen et al., Hydrogen induced degradation: A possible mechanism for light- and elevated temperature- induced degradation in n-type silicon. Solar Energy Materials and Solar Cells 185, 174-182 (2018). https://doi.org/10.1016/j.solmat.2018.05.034
- C. Herring, N. M. Johnson, C. G. Van De Walle, Energy levels of isolated interstitial hydrogen in silicon. Physical Review B 64, (2001).
- E. Kobayashi et al., Light-induced performance increase of silicon heterojunction solar cells. Applied Physics Letters 109, 153503 (2016).
- E. Kobayashi et al., Increasing the efficiency of silicon heterojunction solar cells and modules by light soaking. Solar Energy Materials and Solar Cells 173, 43-49 (2017). https://doi.org/10.1016/j.solmat.2017.06.023
- L. Yang, X. Li, W. Zhang, Q. Yang, Q. Wang, On the Kinetics of Light-Induced Enhancement Effect in Silicon Heterojunction Solar Cells. physica status solidi (RRL) - Rapid Research Letters 17, 2200356 (2023).
- Kim, S. M., et al., "Light-induced degradation and metastable-state recovery with reaction kinetics modeling in boron-doped Czochralski silicon solar cells." Applied Physics Letters 105(8): 083509. (2014).
- A. Herguth and G. Hahn, Journal of Applied Physics 108, 114509 (2010).