DOI QR코드

DOI QR Code

Prediction of ocean surface current: Research status, challenges, and opportunities. A review

  • Ittaka Aldini (Department of Electrical and Information Engineering, Universitas Gadjah Mada) ;
  • Adhistya E. Permanasari (Department of Electrical and Information Engineering, Universitas Gadjah Mada) ;
  • Risanuri Hidayat (Department of Electrical and Information Engineering, Universitas Gadjah Mada) ;
  • Andri Ramdhan (Indonesian Agency for Meteorology, Climatology, and Geophysics)
  • 투고 : 2023.12.23
  • 심사 : 2024.03.05
  • 발행 : 2024.03.25

초록

Ocean surface currents have an essential role in the Earth's climate system and significantly impact the marine ecosystem, weather patterns, and human activities. However, predicting ocean surface currents remains challenging due to the complexity and variability of the oceanic processes involved. This review article provides an overview of the current research status, challenges, and opportunities in the prediction of ocean surface currents. We discuss the various observational and modelling approaches used to study ocean surface currents, including satellite remote sensing, in situ measurements, and numerical models. We also highlight the major challenges facing the prediction of ocean surface currents, such as data assimilation, model-observation integration, and the representation of sub-grid scale processes. In this article, we suggest that future research should focus on developing advanced modeling techniques, such as machine learning, and the integration of multiple observational platforms to improve the accuracy and skill of ocean surface current predictions. We also emphasize the need to address the limitations of observing instruments, such as delays in receiving data, versioning errors, missing data, and undocumented data processing techniques. Improving data availability and quality will be essential for enhancing the accuracy of predictions. The future research should focus on developing methods for effective bias correction, a series of data preprocessing procedures, and utilizing combined models and xAI models to incorporate data from various sources. Advancements in predicting ocean surface currents will benefit various applications such as maritime operations, climate studies, and ecosystem management.

키워드

과제정보

The study for the research was fully funded by The Indonesian Agency of Meteorology Climatology and Geophysics (BMKG).

참고문헌

  1. Allen, M., Dube, O.P., Solecki, W., Aragon-Durand, F., Cramer, W., Humphreys, S. and Kainuma, M. (2018), "Special Report: Global Warming of 1.5 C", Intergovernmental Panel on Climate Change (IPCC). 
  2. Bao, Q., Dong, X., Zhu, D., Lang, S. and Xu, X. (2015), "The Feasibility of Ocean Surface Current Measurement Using Pencil-Beam Rotating Scatterometer", IEEE J. Selec. Topics Appl. Earth Observ. Remote Sens., 8(7), 3441-3451, https://doi.org/10.1109/JSTARS.2015.2414451. 
  3. Bayindir, C. (2019), "Predicting the Ocean Currents using Deep Learning", ArXiv Preprint ArXiv:1906.08066. 
  4. Bleck, R. (2002), "An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates", Ocean Model., 4(1), 55-88.  https://doi.org/10.1016/S1463-5003(01)00012-9
  5. Bolanos, R., Tornfeldt Sorensen, J.V., Benetazzo, A., Carniel, S. and Sclavo, M. (2014), "Modelling ocean currents in the northern Adriatic Sea", Continental Shelf Res., 87, 54-72. https://doi.org/10.1016/j.csr.2014.03.009. 
  6. Booij, N., Holthuijsen, L.H. and Ris, R.C. (1996), "The" SWAN" wave model for shallow water", Coast. Eng., 668-676. 
  7. Bouttier, F. and Courtier, P. (2002), "Data assimilation concepts and methods March 1999", Meteorol. Training Course Lect. Series, 718, 59. 
  8. Chen, C., Beardsley, R.C., Cowles, G., Qi, J., Lai, Z., Gao, G., Stuebe, D., Xu, Q., Xue, P., and Ge, J. (2012), An Unstructured-Grid, Finite-Volume Community Ocean Model: FVCOM User Manual, Sea Grant College Program, Massachusetts Institute of Technology Cambridge.... 
  9. Chen, Y., Oliver, D.S. and Zhang, D. (2009), "Data assimilation for nonlinear problems by ensemble Kalman filter with reparameterization", J. Petroleum Sci, Eng., 66(1-2), 1-14.  https://doi.org/10.1016/j.petrol.2008.12.002
  10. Cook, T., Hazard, L., Otero, M. and Zelenka, B. (2008), "Deployment and maintenance of a High-frequency Radar (HFR) for ocean surface current mapping: Best practices", University of California San Diego, Scripps Institution of Oceanography. 
  11. Dauji, S., Deo, M.C. and Bhargava, K. (2015), "Prediction of ocean currents with artificial neural networks", ISH J. Hydraulic Eng., 21(1), 14-27.  https://doi.org/10.1080/09715010.2014.938133
  12. Dohan, K. (2017), "Ocean surface currents from satellite data", J. Geophys. Res.: Oceans, John Wiley & Sons, Ltd, 122(4), 2647-2651. https://doi.org/10.1002/2017JC012961. 
  13. Dotto, T.S., Naveira Garabato, A., Bacon, S., Tsamados, M., Holland, P.R., Hooley, J., Frajka-Williams, E., et al. (2018), "Variability of the Ross Gyre, Southern Ocean: Drivers and responses revealed by satellite altimetry", Geophys. Res. Lett., 45(12), 6195-6204.  https://doi.org/10.1029/2018GL078607
  14. Durazo, R. and Baumgartner, T.R. (2002), "Evolution of oceanographic conditions off Baja California: 1997-1999", Progress in Oceanography, 54(1), 7-31. https://doi.org/10.1016/S0079-6611(02)00041-1. 
  15. Egger, A.E. and Carpi, A. (2008), "Data: Analysis and interpretation", Visionlearning, 1. 
  16. Fringer, O.B., Dawson, C.N., He, R., Ralston, D.K. and Zhang, Y.J. (2019), "The future of coastal and estuarine modeling: Findings from a workshop", Ocean Model., 143, 101458. https://doi.org/10.1016/j.ocemod.2019.101458. 
  17. Frolov, S., Paduan, J., Cook, M. and Bellingham, J. (2012), "Improved statistical prediction of surface currents based on historic HF-radar observations", Ocean Dynam., 62, 1111-1122.  https://doi.org/10.1007/s10236-012-0553-5
  18. Griffies, S.M. (2012), "Elements of the modular ocean model (MOM)", GFDL Ocean Group Tech. Rep, 7(620), 47. 
  19. Gunther, H., Hasselmann, S. and Janssen, P.A.E.M. (1992), "The WAM model cycle 4".
  20. Hays, G.C. (2017), "Ocean currents and marine life", Current Biology, 27(11), 470-473. 
  21. Hernandez-Lasheras, J., Mourre, B., Orfila, A., Santana, A., Reyes, E. and Tintore, J. (2021), "Evaluating high-frequency radar data assimilation impact in coastal ocean operational modelling", Ocean Sci., 17(4), 1157-1175. https://doi.org/10.5194/os-17-1157-2021. 
  22. Hoteit, I., Luo, X., Bocquet, M., Kohl, A. and Ait-El-Fquih, B. (2018), "Data assimilation in oceanography: Current status and new directions", New Frontiers in Operational Oceanography, 465-512. 
  23. Houssein, E.H., Hosney, M.E., Emam, M.M., Younis, E.M.G., Ali, A.A. and Mohamed, W.M. (2023), "Soft computing techniques for biomedical data analysis: open issues and challenges", Artif. Intell. Rev., https://doi.org/10.1007/s10462-023-10585-2. 
  24. Jan Ackmann. (2017), Error Estimation Algorithms for Ocean Models, Universitat Hamburg, Hamburg. https://doi.org/10.17617/2.2383652. 
  25. Jirakittayakorn, A., Kormongkolkul, T., Vateekul, P., Jitkajornwanich, K. and Lawawirojwong, S. (2017), "Temporal kNN for short-term ocean current prediction based on HF radar observations", Proceedings of the 14th International Joint Conference on Computer Science and Software Engineering (JCSSE), https://doi.org/10.1109/JCSSE.2017.8025921. 
  26. Karna, T., Ljungemyr, P., Falahat, S., Ringgaard, I., Axell, L., Korabel, V., Murawski, J., et al. (2021), "NemoNordic 2.0: Operational marine forecast model for the Baltic Sea", Geoscientific Model Development, 14(9), 5731-5749.  https://doi.org/10.5194/gmd-14-5731-2021
  27. Karri, R.R., Badwe, A., Wang, X., El Serafy, G., Sumihar, J., Babovic, V. and Gerritsen, H. (2013), "Application of data assimilation for improving forecast of water levels and residual currents in Singapore regional waters", Ocean Dynam., 63(1), 43-61. https://doi.org/10.1007/s10236-012-0584-y. 
  28. Khan, A.I. and Al-Habsi, S. (2020), "Machine learning in computer vision", Procedia Computer Science, 167, 1444-1451.  https://doi.org/10.1016/j.procs.2020.03.355
  29. Kowalik, Z. and Murty, T.S. (1993), Numerical Modeling of Ocean Dynamics, 5, World Scientific. 
  30. Kwon, D.S., Kim, S.J., Jin, C., Kim, M., Guha, A., Esenkov, O.E. and Ryu, S. (2023), "Inverse estimation of a vertical current velocity profile using motions of an FPSO and artificial neural network", Ocean Eng., 285, 115343. 
  31. Lammers, W.J. and Badia, P. (2005), "Fundamentals of behavioral research". 
  32. Li, T., Xuan, A. and Shen, L. (2021), "Study of nonlinear interaction between waves and ocean currents using high-fidelity simulation and machine learning", ArXiv Preprint ArXiv:2101.03439. 
  33. Li, Z., McWilliams, J.C., Ide, K. and Farrara, J.D. (2015), "Coastal ocean data assimilation using a multi-scale three-dimensional variational scheme", Ocean Dynam., 65, 1001-1015.  https://doi.org/10.1007/s10236-015-0850-x
  34. Lumpkin, R., Ozgokmen, T. and Centurioni, L. (2017), "Advances in the application of surface drifters", Annu. Rev. Mar. Sci., 9, 59-81.  https://doi.org/10.1146/annurev-marine-010816-060641
  35. Miller, R.N. (2007), Numerical Modeling of Ocean Circulation, Cambridge University Press. 
  36. Mishra, P., Pandey, C.M., Singh, U., Keshri, A. and Sabaretnam, M. (2019), "Selection of appropriate statistical methods for data analysis", Annals of Cardiac Anaesthesia, Wolters Kluwer--Medknow Publications, 22(3), 297. 
  37. Mjolsness, E. and DeCoste, D. (2001), "Machine learning for science: state of the art and future prospects", Science, American Association for the Advancement of Science, 293(5537), 2051-2055.  https://doi.org/10.1126/science.293.5537.2051
  38. Moore, A.M., Arango, H.G., Broquet, G., Powell, B.S., Weaver, A.T. and Zavala-Garay, J. (2011), "The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems: Part I -System overview and formulation", Progress in Oceanography, 91(1), 34-49. https://doi.org/10.1016/j.pocean.2011.05.004. 
  39. Moreno, F.M., Neto, L.A.S., Cozman, F.G., Dottori, M. and Tannuri, E.A. (2022), "Enhancing the forecast of ocean physical variables through physics informed machine learning in the Santos Estuary, Brazil", OCEANS 2022 - Chennai, 1-7, https://doi.org/10.1109/OCEANSChennai45887.2022.9775449. 
  40. Muhamed Ali, A., Zhuang, H., VanZwieten, J., Ibrahim, A.K. and Cherubin, L. (2021), "A deep learning model for forecasting velocity structures of the loop current system in the gulf of mexico", Forecasting, 3(4), 934-953.  https://doi.org/10.3390/forecast3040056
  41. Nerger, L., Schulte, S. and Bunse-Gerstner, A. (2014), "On the influence of model nonlinearity and localization on ensemble Kalman smoothing", Q. J. Roy. Meteorol. Soc., 140(684), 2249-2259.  https://doi.org/10.1002/qj.2293
  42. Ness, K.L., Paul, A., Sun, L. and Zhang, Z. (2022), "Towards a generic physics-based machine learning model for geometry invariant thermal history prediction in additive manufacturing", J. Mater. Process. Tech., 302, 117472. https://doi.org/10.1016/j.jmatprotec.2021.117472. 
  43. Oke, P.R., Brassington, G.B., Griffin, D.A. and Schiller, A. (2010), "Ocean data assimilation: a case for ensemble optimal interpolation", Aust. Meteorol. Oceanographic J., 59(1), 67-76.  https://doi.org/10.22499/2.5901.008
  44. Otter, D.W., Medina, J.R. and Kalita, J.K. (2020), "A survey of the usages of deep learning for natural language processing", IEEE T. Neural Networks Learning Syst., 32(2), 604-624.  https://doi.org/10.1109/TNNLS.2020.2979670
  45. Pongto, R., Wiwattanaphon, N., Lekpong, P., Lawawirojwong, S., Srisonphan, S., Kee, K.F. and Jitkajornwanich, K. (2020), "The grid-based spatial ARIMA model: An innovation for short-term predictions of ocean current patterns with big HF radar data", Recent Advances in Information and Communication Technology 2019: Proceedings of the 15th International Conference on Computing and Information Technology (IC2IT 2019) 15, 26-36. 
  46. Pugliese, R., Regondi, S. and Marini, R. (2021), "Machine learning-based approach: global trends, research directions, and regulatory standpoints", Data Sci. Management, 4, 19-29. https://doi.org/10.1016/j.dsm.2021.12.002. 
  47. Rahmstorf, S. (2003), "Thermohaline circulation: The current climate", Nature, 421(6924), 699. https://doi.org/ 10.1038/421699a. 
  48. Reichle, R.H. (2008), "Data assimilation methods in the Earth sciences", Adv. Water Resour., 31(11), 1411-1418. https://doi.org/10.1016/j.advwatres.2008.01.001. 
  49. Rotor, M.A., Hefazi, H. and Enano Jr., N. (2023), "Review on tidal stream energy and blade designs for tropical site conditions and a look at Philippines' future prospects", Ocean Syst. Eng., 13(3), 247-268. https://doi.org/10.12989/ose.2023.13.3.247. 
  50. Sarker, I.H. (2021), "Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions", SN Computer Science, 2(6), 420. 
  51. Sarker, I.H. (2022), "Ai-based modeling: Techniques, applications and research issues towards automation, intelligent and smart systems", SN Computer Science, 3(2), 158. 
  52. Schultz, M.G., Betancourt, C., Gong, B., Kleinert, F., Langguth, M., Leufen, L.H., Mozaffari, A., et al. (2021), "Can deep learning beat numerical weather prediction?", Philos. T. Roy. Society A, 379(2194), 20200097. 
  53. Shchepetkin, A.F. and McWilliams, J.C. (2005), "The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model", Ocean Model., 9(4), 347-404.  https://doi.org/10.1016/j.ocemod.2004.08.002
  54. Siedler, G., Grieffies, S., Gould, J. and Church, J. (2013), Ocean Circulation and Climate, 2nd Ed., A 21st Century Perspective, Academic Press. 
  55. Sinha, A. and Abernathey, R. (2021), "Estimating ocean surface currents with machine learning", Front. Mar. Sci., 8. 
  56. Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Liu, Z., Berner, J., Wang, W., et al. (2019), "A description of the advanced research WRF model version 4", National Center for Atmospheric Research: Boulder, CO, USA, 145(145), 550. 
  57. Song, T., Li, Y., Meng, F., Xie, P. and Xu, D. (2022), "A novel deep learning model by BiGRU with attention mechanism for tropical cyclone track prediction in the northwest pacific", J. Appl. Meteorol. Climatology, American Meteorological Society, Boston MA, USA, 61(1), 3-12. https://doi.org/10.1175/JAMC-D-20-0291.1. 
  58. Song, T., Pang, C., Hou, B., Xu, G., Xue, J., Sun, H. and Meng, F. (2023), "A review of artificial intelligence in marine science", Front. Earth Sci., 11, 1090185. 
  59. Stanev, E. and Schulz-Stellenfleth, J. (2014), "Methods of data assimilation", Die Kuste, 81 Modelling, 81, 133-151. 
  60. Storto, A., Falchetti, S., Oddo, P., Jiang, Y. and Tesei, A. (2020), "Assessing the impact of different ocean analysis schemes on oceanic and underwater acoustic predictions", J. Geophys. Res.: Oceans, 125(7), e2019JC015636. 
  61. Sugiura, N., Awaji, T., Masuda, S., Mochizuki, T., Toyoda, T., Miyama, T., Igarashi, H., et al. (2008), "Development of a four-dimensional variational coupled data assimilation system for enhanced analysis and prediction of seasonal to interannual climate variations", J. Geophys. Res.: Oceans, 113(10). 
  62. Szczepanski, M. (2019), "Economic impacts of artificial intelligence (AI)", EPRS: European Parliamentary Research Service. 
  63. Tapeh, A.T.G. and Naser, M.Z. (2023), "Artificial intelligence, machine learning, and deep learning in structural engineering: A scientometrics review of trends and best practices", Arch. Comput. Method. Eng., 30(1), 115-159. https://doi.org/10.1007/s11831-022-09793-w. 
  64. Thongniran, N., Vateekul, P., Jitkajornwanich, K., Lawawirojwong, S. and Srestasathiern, P. (2019), "Spatiotemporal deep learning for ocean current prediction based on HF radar data", Proceedings of the 16th International Joint Conference on Computer Science and Software Engineering (JCSSE). 
  65. Tokmakian, R. and Challenor, P. (2019), "Near surface ocean temperature uncertainty related to initial condition uncertainty", Climate Dynam., 53(7), 4683-4700. https://doi.org/10.1007/s00382-019-04872-4. 
  66. Tolman, H.L. (2009), "User manual and system documentation of WAVEWATCH III TM version 3.14", Technical Note, MMAB Contribution, 276(220). 
  67. Tonani, M., Balmaseda, M., Bertino, L., Blockley, E., Brassington, G., Davidson, F., Drillet, Y., et al. (2015), "Status and future of global and regional ocean prediction systems", J. Operational Oceanography, 8(2), 201-220. 
  68. "Unravelling ENSO complexity". (2023), Nature Geoscience, 16(2), 105. https://doi.org/10.1038/s41561-023-01134-1. 
  69. Villas Boas, A.B., Ardhuin, F., Ayet, A., Bourassa, M.A., Brandt, P., Chapron, B., Cornuelle, B.D., et al. (2019), "Integrated observations of global surface winds, currents, and waves: requirements and challenges for the next decade", Front. Mar. Sci., 6, 425. 
  70. Wen, J., Yang, J., Jiang, B., Song, H. and Wang, H. (2021), "Big data driven marine environment information forecasting: A time series prediction network", IEEE T. Fuzzy Syst., 29(1), 4-18. https://doi.org/10.1109/TFUZZ.2020.3012393. 
  71. Wilkin, J.L. and Hunter, E.J. (2013), "An assessment of the skill of real-time models of Mid-Atlantic Bight continental shelf circulation", J. Geophys. Research: Oceans, 118(6), 2919-2933.  https://doi.org/10.1002/jgrc.20223
  72. Willard, J., Jia, X., Xu, S., Steinbach, M. and Kumar, V. (2020), "Integrating physics-based modeling with machine learning: A survey", ArXiv Preprint ArXiv:2003.04919, 1(1), 1-34. 
  73. Willard, J., Jia, X., Xu, S., Steinbach, M. and Kumar, V. (2022), "Integrating scientific knowledge with machine learning for engineering and environmental systems", ACM Computing Surveys, ACM New York, NY, 55(4), 1-37. 
  74. WMO, G. (2015), "Status of the global observing system for climate", World Metherological Organization. 
  75. Xie, C., Chen, P., Man, T. and Dong, J. (2023), "STCANet: Spatiotemporal coupled attention network for ocean surface current prediction", J. Ocean Univ. China, 22(2), 441-451.  https://doi.org/10.1007/s11802-023-5269-2
  76. Xu, L., Chen, N., Chen, Z., Zhang, C. and Yu, H. (2021), "Spatiotemporal forecasting in earth system science: Methods, uncertainties, predictability and future directions", Earth-Sci. Rev., 222, 103828. https://doi.org/10.1016/j.earscirev.2021.103828. 
  77. Xu, S., Huang, X., Oey, L.-Y., Xu, F., Fu, H., Zhang, Y. and Yang, G. (2015), "POM. gpu-v1. 0: a GPU-based Princeton Ocean Model", Geoscientific Model Development, 8(9), 2815-2827.  https://doi.org/10.5194/gmd-8-2815-2015
  78. Xu, Y., Liu, X., Cao, X., Huang, C., Liu, E., Qian, S., Liu, X., et al. (2021), "Artificial intelligence: A powerful paradigm for scientific research", The Innovation, 2(4), 100179. https://doi.org/10.1016/j.xinn.2021.100179. 
  79. Zandi, O., Zahraie, B., Nasseri, M. and Behrangi, A. (2022), "Stacking machine learning models versus a locally weighted linear model to generate high-resolution monthly precipitation over a topographically complex area", Atmospheric Research, 272, 106159. 
  80. Zelenke, B.C. (2005), "An empirical statistical model relating winds and ocean surface currents: Implications for short-term current forecasts". 
  81. Zhang, Z., Yan, Y., Wang, Z., Song, T., Yin, J., He, X., Guo, P., et al. (2023), "SDPNet: A Novel DeepLearning Method for Ocean Surface Current Prediction", J. Physics: Conference Series, 2486, 012066. 
  82. Zhao, Y., Yang, D., He, Z., Liu, C., Hao, R. and He, J. (2020), "Statistical methods in ocean prediction", Global Oceans 2020: Singapore - U.S. Gulf Coast, 1-7. https://doi.org/10.1109/IEEECONF38699.2020.9389485. 
  83. Zyczkowski, M., Szlapczynska, J. and Szlapczynski, R. (2019), "Review of Weather Forecast Services for Ship Routing Purposes", Polish Maritime Res., 26(4), 80-89. https://doi.org/10.2478/pomr-2019-0069.