DOI QR코드

DOI QR Code

Predictive control and modeling of a point absorber wave energy harvesting connected to the grid using a LPMSG-based power converter

  • Abderrahmane Berkani (L2GEGI Laboratory, Department of Electrical Engineering, Faculty of Applied Science, University of Tiaret) ;
  • Mofareh Hassan Ghazwani (Department of Mechanical Engineering, Faculty of Engineering, Jazan University) ;
  • Karim Negadi (L2GEGI Laboratory, Department of Electrical Engineering, Faculty of Applied Science, University of Tiaret) ;
  • Lazreg Hadji (Department of Civil Engineering, University of Tiaret) ;
  • Ali Alnujaie (Department of Mechanical Engineering, Faculty of Engineering, Jazan University) ;
  • Hassan Ali Ghazwani (Department of Mechanical Engineering, Faculty of Engineering, Jazan University)
  • Received : 2023.07.02
  • Accepted : 2024.01.14
  • Published : 2024.03.25

Abstract

In this paper, the authors explore the modeling and control of a point absorber wave energy converter, which is connected to the electric grid via a power converter that is based on a linear permanent magnet synchronous generator (LPMSG). The device utilizes a buoyant mechanism to convert the energy of ocean waves into electrical power, and the LPMSG-based power converter is utilized to change the variable frequency and voltage output from the wave energy converter to a fixed frequency and voltage suitable for the electric grid. The article concentrates on the creation of a predictive control system that regulates the speed, voltage, and current of the LPMSG, and the modeling of the system to simulate its behavior and optimize its design. The predictive model control is created to guarantee maximum energy output and stable grid connection, using Matlab Simulink to validate the proposed strategy, including control side generator and predictive current grid-side converter loops.

Keywords

Acknowledgement

The authors extend their appreciation to the deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number ISP22-5.

References

  1. Abdelkhalik, O., Robinett, R., Zou, S. Bacelli, G., Coe, R., Bull, D. Wilson, D. and Korde, U. (2016), "On the control design of wave energy converters with wave prediction", J. Ocean Eng. Mar. Energ., 2, 473-483. https://doi.org/10.1007/s40722-016-0048-4.
  2. Adaryani, M.R., Taher, S.A. and Guerrero, J.M. (2020), "Model predictive control of direct-drive wave power generation system connected to DC microgrid through DC cable", Int. T. Elec. Energ. Syst., 30(9), 12484. https://doi.org/10.1002/2050-7038.12484.
  3. Adaryani, M.R., Taher, S.A. and Guerrero, J.M. (2021), "Improved direct model predictive control for variable magnitude variable frequency wave energy converter connected to constant power load", J. Energ. Storage, 43, https://doi.org/10.1016/j.est.2021.103175.
  4. Aguirre, A.S., Ulazia, A., Berastegui, G.I. and Saenz, J. (2021), "Extension and improvement of synchronous linear generator based point absorber operation in high wave excitation scenarios", Ocean Eng., 239, 109844. https://doi.org/10.1016/j.oceaneng.2021.109844.
  5. Ahsan Said, H., Violini, D.G. and Ringwood, J.V. (2022), "Wave-to-grid (W2G) control of a wave energy converter", Energ. Convers. Management, 14, 100190. https://doi.org/10.1016/j.ecmx.2022.100190.
  6. Amon, E.A., Brekken, T.K.A. and Schacher, A.A. (2012), "Maximum power point tracking for ocean wave energy conversion", IEEE T. Ind. Appl., 48(3), 1079-1086, https://doi.org/10.1109/TIA.2012.2190255.
  7. Anderlini, E., Forehand, D.I.M., Bannon, E., Xiao, Q. and Abusara, M. (2018), "Reactive control of a two-body point absorber using reinforcement learning", Ocean Eng., 148, 650-658. https://doi.org/10.1016/j.oceaneng.2017.08.017.
  8. Artal-Sevil, J.S., Dominguez, J.A., El-Shalakany, H. and Dufo, R. (2018), "Modeling and simulation of a wave energy converter system. Case study: Point absorber", Proceedings of the 13th International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco, 1-7. https://doi.org/10.1109/EVER.2018.8362405.
  9. Ataei, A., Rashidi, R., Nedaei, M. and Kurdestani, E. (2015), "Techno-economic viability of a hybrid wind and solar power system for electrification of a commercial building in Shiraz", Adv. Energ. Res., 3(4), 251-263. http://dx.doi.org/10.12989/eri.2015.3.4.251.
  10. Babes, B., Rahmani, L., Chaoui, A. and Hamouda, N. (2017), "Design and experimental validation of a digital predictive controller for variable-speed wind turbine systems", J. Power Elec., 17(1), 232-241. https://doi.org/10.6113/JPE.2017.17.1.232.
  11. Berkani, A., Negadi, K.., Safa, A. and Marignetti, F. (2020), "Design and practical investigation of a model predictive control for power grid converter", Tecnica Italiana-Italian J. Eng. Sci., 64(2-4), 354-360. https://doi.org/10.18280/ti-ijes.642-434.
  12. Binh, P.C., Tri, N.M., Dung, D.T., Ahn, K.K., Kim, S.J. and Koo, W. (2016), "Analysis, design and experiment investigation of a novel wave energy converter", IET Gener. Transm. Distrib., 10, 460-469. https://doi.org/10.1049/iet-gtd.2015.0821.
  13. Casagranda, G. (2015), "Wave-to-wire model of a wave energy conveter equipped with an all-electric power take-off", Master Thesis in Electrical Engineering.
  14. Da Silva, L.S.P, Ding, B., Guo, B. and Sergiienko, N.Y. (2022), "Wave energy converter modelling, control, and power take-off design", In book: Modelling and Optimisation of Wave Energy Converters. https://doi.org/10.1201/9781003198956-3.
  15. Duthoit, M. and Falzarano, J. (2018), "Assessment of the potential for the design of marine renewable energy systems", Ocean Syst. Eng., 8(2), 119-166. https://doi.org/10.12989/ose.2018.8.2.119.
  16. De Backer, G. (2009), "Hydrodynamic design optimization of wave energy converters consisting of heaving point absorbers", Ghent University. Faculty of Engineering, Ghent, Belgium.
  17. Eduard, M. and Yi-Hsiang, Y. (2015), "Review of marine hydrokinetic power generation and power plant", Elec. Power Components Syst., 43, https://doi.org/10.1080/15325008.2015.1030519.
  18. Eedara, A.K., Koritala, C.S. and Rayapudi, S.R. (2019), "Modified model predictive control of back-to-back T-type NPC converter interfacing wind turbine-driven PMSG and electric grid", Arab. J. Sci. Eng., 44, 7047-7065. https://doi.org/10.1007/s13369-019-03775-0.
  19. El-Shalakany, H., Jesus, A.S., Ballestin-Bernad, V., Navarro, D. and Antonio, J. (2022), "Ocean wave energy converters: Analysis, modeling, and simulation", Some case studies. Renewable Energy and Power Quality J., 20, 783-788. https://doi.org/10.24084/repqj20.435.
  20. Engin, C.D. and Yesildirek, A. (2015), "Designing and modeling of a point absorber wave energy converter with hydraulic power take-off unit", Proceedings of the 2015 4th International Conference on Electric Power and Energy Conversion Systems (EPECS), Sharjah, United Arab Emirates. https://doi.org/10.1109/EPECS.2015.7368507.
  21. Fabrizio, M., Haitao, Y. and Luigi, C. (2015), Special issue on "Marine Energy Conversion", Adv. Mech. Eng., 7(5), 1-2. https:// doi.org/10.1177/1687814015586529.
  22. Faizal, M., Rafiuddin, A.M. and Young-Ho, L. (2014), "A design outline for floating point absorber wave energy converters", Adv. Mech. Eng., 846097. https://doi.org/10.1155/2014/846097.
  23. Ghany, A.A., Shehata, E.G., Elsayed, A.H.M., Mohamed, Y.S., Haes Alhelou, H., Siano, P. and Diab, A.A.Z. (2021), "Novel switching frequency FCS-MPC of PMSG for grid-connected wind energy conversion system with coordinated low voltage ride through", Electronics, 10(4), 492. https://doi.org/10.3390/electronics10040492.
  24. Giralda, P.R., Crespo, A.J.C., Coe, R.G., Tagliafierro, B., Dominguez, J.M., Bacelli, G. and Gesteira, M.G. (2021), "Modelling a heaving point-absorber with a closed-loop control system using the DualSPHysics code", Energies, 14(3), 760. https://doi.org/10.3390/en14030760.
  25. Guo, B., Wang, T., Jin, S., Duan, S., Yang, K. and Zhao, Y.A. (2022), "Review of point absorber wave energy converters", J. Mar. Sci. Eng., 10, 1534. https://doi.org/10.3390/jmse10101534.
  26. Huang, X., Zhu, L., Wu, W., Lu, K., Wang, K. and Koh, C.S. (2021), "A global maximum power point tracking control strategy based on particle swarm optimization algorithm for point-absorber-type wave energy converters", Proceedings of the IEEE 12th Energy Conversion Congress & Exposition - Asia (ECCE-Asia), Singapore. https://doi.org/10.1109/ECCE-Asia49820.2021.9479115.
  27. Hung, C.C. and Nguyen, T. (2022), "Adaptive backstepping control with grey theory for offshore platforms", Ocean Syst. Eng., 12(2), 159-172. https://doi.org/10.12989/ose.2022.12.2.159.
  28. Jingjin, X. and Lei. Z. (2013), "Dynamics and control of ocean wave energy converters", Int. J. Dyn. Control, 1, 262-276. https://doi.org/10.1007/s40435-013-0025-x.
  29. Josset, C., Babarit, A. and Clement A.H. (2007), "Wave-to-wire model of the SEAREV wave energy converter", Proceedings of the Institution of Mechanical Engineers, Part M: J. Engineering for the Maritime Environment, 221(2), 81-93. https://doi.org/10.1243/14750902JEME48.
  30. Lee, K., Jung, K., Suh, Y., Kim, C., Yoo, H. and Park, S. (2014), "Comparison of high power semiconductor devices losses in 5MW PMSG MV wind turbines", Proceedings of the IEEE Applied Power Electronics Conference and Exposition - APEC 2014, Fort Worth, TX, USA. https://doi.org/10.1109/APEC.2014.6803657.
  31. Lin, W.M., Hong, C.M., Ou, T.C. and Chiu, T.M. (2011), "Hybrid intelligent control of PMSG wind generation system using pitch angle control with RBFN", J. Energ. Convers. Management, 52(2), 1244-1251. https://doi.org/10.1016/j.enconman.2010.09.020.
  32. Makhad, M., Zazi, M. and Loulijat, A. (2020), "Nonlinear control of WECS based on PMSG for optimal power extraction", Int. J. Elec. Comput. Eng. (IJECE), 10(3), 2815-2823. http://doi.org/10.11591/ijece.v10i3.pp2815-2823.
  33. Michael, L., Yu, Y.H., Kelley, R. and Carlos, M. (2014), "Development and demonstration of the WEC-sim wave energy converter simulation tool", Marine Energy Technology Symposium.
  34. Nguyen, C.U., Lee, S.Y., Huynh, T.C. and Kim, J.T. (2019), "Vibration characteristics of offshore wind turbine tower with gravity-based foundation under wave excitation", Smart Struct. Syst., 23(5), 405-420. https://doi.org/10.12989/sss.2019.23.5.405.
  35. Noman, M., Li, G., Wang, K. and Han, B. (2021), "Electrical control strategy for an ocean energy conversion system", Prot. Control Mod. Power Syst., 6(12). https://doi.org/10.1186/s41601-021-00186-y.
  36. Pastor, J. and Yucheng, L. (2014), "Time domain modeling and power output for a heaving point absorber wave energy converter", Int. J. Energ. Environ. Eng., 5(2-3), https://doi.org/10.1007/s40095-014-0101-9.
  37. Poguluri, S.K., Kim, D. and Bae, Y.H. (2022), "Performance assessment of pitch-type wave energy converter in irregular wave conditions on the basis of numerical investigation", Ocean Syst. Eng., 12(1), 23-38. https://doi.org/10.12989/ose.2022.12.1.023.
  38. Pranupa, S., Sriram, A.T. and Rao, S.N. (2022), "Wind energy conversion system using perturb & observe-based maximum power point approach interfaced with T-type three-level inverter connected to grid", Clean Energy, 6(4), 534-549. https://doi.org/10.1093/ce/zkac034.
  39. Richter, M. (2011), Different model predictive control approaches for controlling point absorber wave energy converters.
  40. Richter, M., Magana, M., ESawodny, O. and Brekken, T.K.A. (2013), "Nonlinear model predictive control of a point absorber wave energy converter", IEEE T. Sustain. Energ., 4(1), 118-126, https://doi.org/10.1109/TSTE.2012.2202929.
  41. Ringwood, J., Ferri, F., Tom, N., Ruehl, K., Faedo, N., Bacelli,, G., Yu, Y. and Coe, RG. (2019), "The wave energy converter control competition: Overview", Proceedings of the ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering, 10, Ocean Renewable Energy. Glasgow, Scotland, UK. June 9-14. https://doi.org/10.1115/OMAE2019-95216.
  42. Ronald Repi, V.V. and Tirta Diputra, F. (2022), "Simulation and validation of floating-point absorber (FPA) wave energy converter (WEC) using open-source WEC-Sim simulation", Proceedings of the AIP Conference, 2664, 050003. https://doi.org/10.1063/5.0108138.
  43. Ruezga, A., Canedo, J.M.C., Verduzco-Zapata, M.G. and Ocampo-Torres, F.J. (2021), "Performance analysis of a point-absorber wave energy converter with a single buoy composed of three rigidly coupled structures", Int. J. Mar. Energ., 4(2), 37-45. https://doi.org/10.36688/imej.4.37-45.
  44. Shengquan, L., Juan, L., Yongwei, T., Yanqiu, S. and Wei, C. (2020), "Model-based model predictive control for a direct-driven permanent magnet synchronous generator with internal and external disturbances", Transactions of the Institute of Measurement and Control, 42(3), 586-597. https://doi.org/10.1177/0142331219878574.
  45. Singh, A. (2020), "Development and control of generator-converter topology for direct-drive wind turbines, rotating machinery", Intech Open. https://doi.org/10.5772/intechopen.85877.
  46. Singh, D., Singh, A., Ranjan Paul, A. and Samad, A. (2021), "Design and simulation of point absorber wave energy converter", E3S Web of Conferences, 321, 03003. https://doi.org/10.1051/e3sconf/202132103003.
  47. Srivastava, A. and Bajpai, R.S. (2022), "Model predictive control of grid-connected wind energy conversion system", IETE J. Res., 68(5),3474-3486. https://doi.org/10.1080/03772063.2020.1768905.
  48. Sunn, Y., Zhao, Y., Dou, Z., Li, Y. and Guo, L. (2020), "Model predictive virtual synchronous control of permanent magnet synchronous generator-based wind power system", Energies, 13(19), 5022. https://doi.org/10.3390/en13195022.
  49. Tagliafierro, B., Martinez-Estevez, I., Dominguez, J.M., Crespo, A.J.C., Goteman, M., Engstrom, J. and Gomez-Gesteira, M. (2022), "A numerical study of a taut-moored point-absorber wave energy converter with a linear power take-off system under extreme wave conditions", Appl. Energ., 311, https://doi.org/10.1016/j.apenergy.2022.118629.
  50. Venkata, Y. (2014), "Predictive control of multilevel converters for megawatt wind energy conversion systems", https://doi.org/10.13140/RG.2.1.3620.2400.
  51. Wan, Z., Zheng, H., Sun, K., Zhang, D., Yao, Z. and Song, T. (2019), "Simulation of wave energy converter with designed pendulor-slope combination", Energ. Procedia, 158, 733-737. https://doi.org/10.1016/j.egypro.2019.01.196.
  52. Wang, L., Isberg, J. and Tedeschi, E. (2018), "Review of control strategies for wave energy conversion systems and their validation: the wave-to-wire approach", Renew. Sustain. Energ. Rev., 81, 366-379. https://doi.org/10.1016/j.rser.2017.06.074.
  53. Wong, J. and Yi, J. (2018), "Design and study of spinning sea wave point absorber", Project Report. Universiti Sains Malaysia, Pusat Pengajian Kejuruteraan Mekanikal. (Submitted).
  54. Xu, L.H. and Li, Z.X. (2011), "Model predictive control strategies for protection of structures during earthquakes", Struct. Eng. Mech., 40(2), 233-243. https://doi.org/10.12989/sem.2011.40.2.233.
  55. Xuereb, A., Staines, C.S. and Staines, T. (2014). "Design of a linear electrical machine for a wave generation system in the maltese waters", In book: Renewable Energy in the Service of Mankind Vol I Chapter: 31. https://doi.org/10.1007/978-3-319-17777-9_31.
  56. Xu, W., Islam, M.R. and Zhu, J.G. (2020), "Guest editorial: Progress in electric machines, power converters and their Control for wave energy generation", IET Elec. Power Appl., (14), 731-732. https://doi.org/10.1049/iet-epa.2020.0306.
  57. Yaramasu, V., Dekka, A., Duran, M.J., Kouro, S. and Wu, B. (2017), "PMSG-based wind energy conversion systems: survey on power converters and controls", IET Elec. Power Appl., 11, 956-968. https://doi.org/10.1049/iet-epa.2016.0799.
  58. Yaramasu, V. and Wu, B. (2017), "Model predictive control of wind energy conversion systems", Wiley-IEEE Press. https://doi.org/10.1002/9781119082989.
  59. Yemane, M. (2019), "Modelling and control of wave-to wire model of point absorber Wave Energy Converters (WECs)", Master's thesis in Electric Power Engineering, Norwegian University of Science and Technology, Faculty of Engineering, Department of Electric Power Engineering, June 2019.
  60. Ye, L. and Yu, Y.H. (2012), "A synthesis of numerical methods for modeling wave energy converter-point absorbers, Renew. Sustain. Energ. Rev., 16(6), 4352-4364. https://doi.org/10.1016/j.rser.2011.11.008.
  61. Zhang, A., Yaramasu, V., Rodriguez, J. and Zhang, Z. (2022), "Modulated predictive current control of back-to-back NPC converter in PMSG wind energy system with reduced computational burden", Proceedings of the IEEE 7th Southern Power Electronics Conference (SPEC), Nadi, Fiji. https://doi.org/10.1109/SPEC55080.2022.10058345.