DOI QR코드

DOI QR Code

Study on the influence of structural and ground motion uncertainties on the failure mechanism of transmission towers

  • Zhaoyang Fu (Shandong Research Institute of Industrial Technology) ;
  • Li Tian (Shandong Research Institute of Industrial Technology) ;
  • Xianchao Luo (Shandong Research Institute of Industrial Technology) ;
  • Haiyang Pan (Shandong Research Institute of Industrial Technology) ;
  • Juncai Liu (School of Civil Engineering, Shandong University) ;
  • Chuncheng Liu (Northeast Electric Power University)
  • Received : 2023.06.12
  • Accepted : 2024.03.04
  • Published : 2024.04.25

Abstract

Transmission tower structures are particularly susceptible to damage and even collapse under strong seismic ground motions. Conventional seismic analyses of transmission towers are usually performed by considering only ground motion uncertainty while ignoring structural uncertainty; consequently, the performance evaluation and failure prediction may be inaccurate. In this context, the present study numerically investigates the seismic responses and failure mechanism of transmission towers by considering multiple sources of uncertainty. To this end, an existing transmission tower is chosen, and the corresponding three-dimensional finite element model is created in ABAQUS software. Sensitivity analysis is carried out to identify the relative importance of the uncertain parameters in the seismic responses of transmission towers. The numerical results indicate that the impacts of the structural damping ratio, elastic modulus and yield strength on the seismic responses of the transmission tower are relatively large. Subsequently, a set of 20 uncertainty models are established based on random samples of various parameter combinations generated by the Latin hypercube sampling (LHS) method. An uncertainty analysis is performed for these uncertainty models to clarify the impacts of uncertain structural factors on the seismic responses and failure mechanism (ultimate bearing capacity and failure path). The numerical results show that structural uncertainty has a significant influence on the seismic responses and failure mechanism of transmission towers; different possible failure paths exist for the uncertainty models, whereas only one exists for the deterministic model, and the ultimate bearing capacity of transmission towers is more sensitive to the variation in material parameters than that in geometrical parameters. This research is expected to provide an in-depth understanding of the influence of structural uncertainty on the seismic demand assessment of transmission towers.

Keywords

Acknowledgement

This research is supported by the Taishan Scholars Program.

References

  1. Alembagheri, M. and Seyedkazemi, M. (2014), "Seismic performance sensitivity and uncertainty analysis of gravity dams", Earthq. Eng. Struct. Dyn., 44(1), 41-58. https://doi.org/10.1002/eqe.2457.
  2. Asgarian, B. and Ordoubadi, B. (2016), "Effects of structural uncertainties on seismic performance of steel moment resisting frames", J. Constr. Steel Res., 120(4), 132-142. https://doi.org/10.1016/j.jcsr.2015.12.031.
  3. Asgarian, B., Dadras, Eslamlou, S., Zaghi, A.E. and Mehr, M. (2016), "Progressive collapse analysis of power transmission towers", J. Constr. Steel Res., 123(8), 31-40. https://doi.org/10.1016/j.jcsr.2016.04.021.
  4. Baker, J.W. and Cornell, C.A. (2008), "Uncertainty propagation in probabilistic seismic loss estimation", Struct. Saf., 30(3), 236-252. https://doi.org/10.1016/j.strusafe.2006.11.003.
  5. Buratti, N., Ferracuti, B. and Savoia, M. (2010), "Response surface with random factors for seismic fragility of reinforced concrete frames", Struct. Saf., 32(1), 42-51. https://doi.org/10.1016/j.strusafe.2009.06.003.
  6. CECS 392-2014 (2014), Code for Anti-Collapse Design of Building Structures, China Planning Press, Beijing, China.
  7. Celik, O.C. and Ellingwood, B.R. (2010), "Seismic fragilities for non-ductile reinforced concrete frames - Role of aleatoric and epistemic uncertainties", Struct. Saf., 32(1), 1-12. https://doi.org/10.1016/j.strusafe.2009.04.003.
  8. Choi, E., DesRoches, R. and Nielson, B. (2004), "Seismic fragility of typical bridges in moderate seismic zones", Eng. Struct., 26(2), 187-199. https://doi.org/10.1016/j.engstruct.2003.09.006.
  9. Choudhury, T. and Kaushik, H.B. (2018), "Seismic response sensitivity to uncertain variables in RC frames with infill walls", J. Struct. Eng., 144(10), 04018184. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002190.
  10. Ding, Y., Song, X. and Zhu, H.T. (2017), "Probabilistic progressive collapse analysis of steel-concrete composite floor systems", J. Constr. Steel Res., 129(2), 129-140. https://doi.org/10.1016/j.jcsr.2016.11.009.
  11. DL/T 5486-2013 (2013), Technical Code for the Design of Tower Structures of UHV Overhead Transmission Line, China Electric Power Press, Beijing, China.
  12. Dolsek, M. (2009), "Incremental dynamic analysis with consideration of modelling uncertainties", Earth. Eng. Struct. Dyn., 38(6), 805-825. https://doi.org/10.1002/eqe.869.
  13. Ellingwood, B.R. and Kinali, K. (2009), "Quantifying and communicating uncertainty in seismic risk assessment", Struct. Saf., 31(2), 179-187. https://doi.org/10.1016/j.strusafe.2008.06.001.
  14. FEMA (2009), FEMA P695-Quantification of Building Seismic Performance Factors, Federal Emergency Management Agency (FEMA), Washington, D.C., USA.
  15. Fu, X. and Li, H.N. (2018), "Uncertainty analysis of the strength capacity and failure path for a transmission tower under a wind load", J. Wind. Eng. Ind. Aerodyn., 173(2), 147-155. https://doi.org/10.1016/j.jweia.2017.12.009.
  16. GB 50011-2010 (2010), Code for Seismic Design of Buildings, China Architecture and Building Press, Beijing, China.
  17. GB 50068-2018 (2018), Unifide Standard for Reliability Design of Building Structures, China Architecture and Building Press, Beijing, China.
  18. GB 50665-2011 (2012), Code for Design of 1000kV Overhead Transmission Line, China Architecture and Building Press, Beijing, China.
  19. Haririardebili, M.A. and Saouma, V.E. (2016), "Collapse fragility curves for concrete dams: Comprehensive study", J. Struct. Eng., 142(10), 04016075. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001541.
  20. Helton, J.C. and Davis, F.J. (2003), "Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems", Reliab. Eng. Syst. Saf., 81(1), 23-69. https://doi.org/10.1016/S0951-8320(03)00058-9.
  21. JCSS (2001), Probabilistic Model Code-Part 3-Material Properties, Joint Committee on Structural Safety, Tokyo, Japan.
  22. Kazantzi, A.K., Vamvatsikos, D. and Lignos, D.G. (2014), "Seismic performance of a steel moment-resisting frame subject to strength and ductility uncertainty", Eng. Struct. 78(6), 69-77. https://doi.org/10.1016/j.engstruct.2014.06.044.
  23. Kiani, A., Mansouri, B. and Moghadam, A.S. (2016), "Fragility curves for typical steel frames with semi-rigid saddle connections", J. Constr. Steel Res., 118(3), 231-242. https://doi.org/10.1016/j.jcsr.2015.11.001.
  24. Le, T.H. and Mosalam, K.M. (2005), "Seismic demand sensitivity of reinforced concrete shear-wall building using FOSM method", Earth. Eng. Struct. Dyn., 34(14), 1719-1736. https://doi.org/10.1002/eqe.506.
  25. Liel, A.B., Haselton, C.B., Deierlein, G.G. and Baker, J.W. (2009), "Incorporating modeling uncertainties in the assessment of seismic collapse risk of buildings", Struct. Saf., 31(2), 197-211. https://doi.org/10.1016/j.strusafe.2008.06.002.
  26. Mehanny, S.S.F., Ramadan, O. and El Howary, H.A. (2014), "Assement of bridge vulnerability due to seismic excitations considering wave passage effects", Eng. Struct., 70(7), 197-207. https://doi.org/10.1016/j.engstruct.2014.04.010.
  27. Mendes, N. and Lourenco, P.B. (2014), "Sensitivity analysis of the seismic performance of existing masonry buildings", Eng. Struct., 80(1), 137-146. https://doi.org/10.1016/j.engstruct.2014.09.005.
  28. Monteiro, R., Delgado, R. and Pinho, R. (2016), "Probabilistic seismic assessment of RC bridges: Part I-uncertainty models", Struct., 5(2), 258-273. https://doi.org/10.1016/j.istruc.2015.08.002.
  29. Morelli, F., Laguardia, R., Faggella, M., Piscini, A., Gigliotti, R. and Salvatore, W. (2017), "Ground motions and scaling techniques for 3D performance based seismic assessment of an industrial steel structure", B. Earth. Eng., 16(3), 1179-1208. https://doi.org/10.1007/s10518-017-0244-1.
  30. Nielson, B.G. and DesRoches, R. (2007), "Analytical seismic fragility curves for typical bridges in the Central and Southeastern United States", Earth. Spectra, 23(3), 615-633. https://doi.org/10.1193/1.2756815.
  31. Padgett, J.E. and DesRoches, R. (2007), "Sensitivity of seismic response and fragility to parameter uncertainty", J. Struct. Eng., 133(12), 1710-1718. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:12(1710).
  32. Pan, H.Y., Tian, L., Fu, X. and Li, H.N. (2020), "Sensitivities of the seismic response and fragility estimate of a transmission tower to structural and ground motion uncertainties", J. Constr. Steel Res., 167(4), 105941. https://doi.org/10.1016/j.jcsr.2020.105941.
  33. Pang, Y.T., Wu, X., Shen, G. and Yuan, W.C. (2014), "Seismic fragility analysis of cable-stayed bridges considering different sources of uncertainties", J. Bridge. Eng., 19(4), 04013015. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000565.
  34. Porter, K.A., Beck, J.L. and Shaikhutdinov, R.V. (2002), "Investigation of sensitivity of building loss estimates to major uncertain variables for the Van Nuys testbed", PEER Technical Report; Pacific Earthquake Engineering Research Center, Richmond, CA, USA.
  35. Rizzano, G. and Tolone, I. (2009), "Seismic assessment of existing RC frames: Probabilistic approach", J. Struct. Eng., 135(7), 836-852. https://doi.org/10.1061/ASCE0733-94452009135:7836.
  36. Rohmer, J., Douglas, J., Bertil, D., Monfort, D. and Sedan, O. (2014), "Weighing the importance of model uncertainty against parameter uncertainty in earthquake loss assessments", Soil. Dyn. Earth. Eng., 58(3), 1-9. https://doi.org/10.1016/j.soildyn.2013.11.006.
  37. Shinozuka, M., Feng, M.Q., Kim, H.K. and Kim S.H. (2000), "Nonlinear static procedure for fragility curve development", J. Eng. Mech., 126(12), 1287-1295. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1287).
  38. Shome, N. and Cornell, C.A. (2009), "Probabilistic seismic demand analysis of nonlinear structures", Ph.D. Dissertation, Stanford University, Palo Alto, CA, USA.
  39. Spina, D., Acunzo, G., Fiorini, N., Mori, F. and Dolce, M. (2021), "Probabilistic simplified seismic model from ambient vibrations (SMAV) of existing reinforced concrete buildings", Eng. Struct., 238(7), 112255. https://doi.org/10.1016/j.engstruct.2021.112255.
  40. Su, H.Z., Li, J.Y., Guo, Z.Y. and Wen, Z.P. (2018), "Nonprobabilistic reliability evaluation for in-service gravity dam undergoing structural reinforcement", IEEE. Trans. Reliab. 67(3), 970-986. https://doi.org/10.1109/TR.2018.2827919.
  41. Tian, L., Ma, R.S. and Qu, B. (2018), "Influence of different criteria for selecting ground motions compatible with IEEE 693 required response spectrum on seismic performance assessment of electricity transmission towers", Eng. Struct., 156(2), 337-350. https://doi.org/10.1016/j.engstruct.2017.11.046.
  42. Tian, L., Pan, H.Y. and Ma, R.S. (2019b), "Probabilistic seismic demand model and fragility analysis of transmission tower subjected to near-field ground motions", J. Constr. Steel Res., 156(5), 266-275. https://doi.org/10.1016/j.jcsr.2019.02.011.
  43. Tian, L., Pan, H.Y. Ma, R.S. and Dong, X. (2019a), "Seismic failure analysis and safety assessment of an extremely long-span transmission tower-line system", Struct. Eng. Mech., 71(3), 305-315. https://doi.org/10.12989/sem.2019.71.3.305.
  44. Tian, L., Pan, H.Y., Ma, R.S., Zhang L.J. and Liu Z.W. (2020), "Full-scale test and numerical failure analysis of a latticed steel tubular transmission tower", Eng. Struct., 208(4), 109919. https://doi.org/10.1016/j.engstruct.2021.112255.
  45. Tian, L., Pan, H.Y., Ma, R.S. and Qiu, C.X. (2017), "Collapse simulations of a long span transmission tower-line system subjected to near-fault ground motions", Earth. Struct., 13(2), 211-220. https://doi.org/10.12989/eas.2017.13.2.211.
  46. Tubaldi, E., Barbato, M. and Dall'Asta, A. (2012), "Influence of model parameter uncertainty on seismic transverse response and vulnerability of steel-concrete composite bridges with dual load path", J. Struct. Eng., 138(3), 363-374. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000456.
  47. Val, D., Bljuger, F. and Yankelevsky, D. (1997), "Reliability evaluation in nonlinear analysis of reinforced concrete structures", Struct. Saf., 19(2), 203-217. https://doi.org/10.1016/S0167-4730(96)00025-2.
  48. Vamvatsikos, D. and Fragiadakis, M. (2010), "Incremental dynamic analysis for estimating seismic performance sensitivity and uncertainty", Earth. Eng. Struct. Dyn., 39(7), 141-163. https://doi.org/10.1002/eqe.935.
  49. Wang, C., Feng, K.R., Zhang, H. and Li, Q.W. (2019), "Seismic performance assessment of electric power systems subjected to spatially correlated earthquake excitations", Struct. Infratr. E., 15(12), 351-361. https://doi.org/10.1080/15732479.2018.1547766.
  50. Wu, G., Zhai, C.H., Li, S. and Xie, L.L. (2014), "Effects of near-fault ground motions and equivalent pulses on large crossing transmission tower-line system", Eng. Struct., 77(10), 161-69. https://doi.org/10.1016/j.engstruct.2014.08.013.
  51. Xie, L.Y., Tang, J., Tang, H.S., Xie, Q. and Xue. S.T. (2012), "Seismic fragility assessment of transmission towers via performance-based analysis", Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal. September.
  52. Yu, X.H., Lu, D.G., Qian, K. and Li, B. (2017), "Uncertainty and sensitivity analysis of reinforced concrete frame structures subjected to column loss", J. Perform. Constr. Facil., 31(1), 04016069. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000930.
  53. Zhang, J. and Huo, Y.L. (2009), "Evaluating effectiveness and optimum design of isolation devices for highway bridges using the fragility function method", Eng. Struct., 31(8), 1648-1660. https://doi.org/10.1016/j.engstruct.2009.02.017.
  54. Zhang, P., Song, G.B., Li, H.N. and Lin, Y.X. (2012), "Seismic control of power transmission tower using pounding TMD", J. Eng. Mech., 139(10), 1395-1406. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000576.
  55. Zhang, Y., Li, Y. and Kennedy, D. (2019), "An uncertain computational model for random vibration analysis of subsea pipelines subjected to spatially varying ground motions", Eng. Struct., 183(3), 550-561. https://doi.org/10.1016/j.engstruct.2019.01.031
  56. Zhao, B. and Taucer, F. (2010), "Performance of infrastructure during the May 12, 2008 Wenchuan earthquake in China", J. Earthq. Eng., 14(4), 578-600. https://doi.org/10.1080/13632460903274053.
  57. Zheng, H.D., Fan, J. and Long, X.H. (2017), "Analysis of the seismic collapse of a high-rise power transmission tower structure", J. Constr. Steel Res., 134(7), 180-193. https://doi.org/10.1016/j.jcsr.2017.03.005.
  58. Zhong, J., Zhi, X.D. and Fan, F. (2018), "Sensitivity of seismic response and fragility to parameter uncertainty of single-layer reticulated domes" Int. J. Steel Struct., 18(5), 1607-1616. https://doi.org/10.1007/s13296-018-0057-3.