DOI QR코드

DOI QR Code

MCST bending formulation of a cylindrical micro-shell based on TSDT

  • Mohammad Arefi (Faculty of Mechanical Engineering, Department of Solid Mechanics, University of Kashan)
  • Received : 2023.03.10
  • Accepted : 2024.03.04
  • Published : 2024.04.25

Abstract

The present paper develops application of third-order shear deformation theory (TSDT) and modified couple stress theory (MCST) to size-dependent bending analysis of a functionally graded cylindrical micro-shell. The radial and axial displacement components are described based on TSDT for more accurate analysis. The effect of small scales is accounted based on MCST. The principle of virtual work is used for derivation of bending governing equations. The solution is presented for a simply-supported boundary condition to account the influence of various important parameters such as micro length scale parameter, in-homogeneous index and some dimensionless geometric parameters such as length to radius and length to thickness ratios on the bending results. A comparative analysis is presented to examine the effect of order of employed shear deformation theory on the axial and radial displacements.

Keywords

References

  1. Adab, N. and Arefi, M. (2022), "Vibrational behavior of truncated conical porous GPL-reinforced sandwich micro/nano-shells", Eng. Comput., 39(1), 419-443. https://doi.org/10.1007/s00366-021-01580-8.
  2. Adab, N., Arefi, M. and Amabili, M. (2022), "A comprehensive vibration analysis of rotating truncated sandwich conical microshells including porous core and GPL-reinforced face-sheets", Compos. Struct., 279, 114761. https://doi.org/10.1016/j.compstruct.2021.114761.
  3. Arefi, M. and Adab, N. (2021), "Coupled stress based formulation for static and dynamic analyses of a higher-order shear and normal deformable FG-GPL reinforced microplates", Waves Random Complex Media, 2021, 1-26. https://doi.org/10.1080/17455030.2021.1989084.
  4. Arefi, M. and Allam, M.N.M. (2015), "Nonlinear responses of an arbitrary FGP circular plate resting on foundation", Smart. Struct. Syst., 16(1), 81-100. https://doi.org/10.12989/sss.2015.16.1.081.
  5. Arefi, M. and Amabili, M. (2021), "A comprehensive electro-magneto-elastic buckling and bending analyses of three-layered doubly curved nanoshell, based on nonlocal three-dimensional theory", Compos. Struct., 257(1), 113100. https://doi.org/10.1016/j.compstruct.2020.113100.
  6. Arefi, M. and Civalek, O. (2020) "Static analysis of functionally graded composite shells on elastic foundations with nonlocal elasticity theory", Arch. Civil Mech. Eng., 20(1), 1-17. https://doi.org/10.1007/s43452-020-00032-2.
  7. Arefi, M. and Najafitabar, F. (2021), "Buckling and free vibration analyses of a sandwich beam made of a soft core with FG-GNPs reinforced composite face-sheets using Ritz Method", Thin Wall. Struct., 158, 107200. https://doi.org/10.1016/j.tws.2020.107200.
  8. Arefi, M. and Zenkour, A.M. (2019), "Influence of micro-length-scale parameters and inhomogeneities on the bending, free vibration and wave propagation analyses of a FG Timoshenko's sandwich piezoelectric microbeam", J. Sandw. Struct. Mater., 21(4), 1243-1270. https://doi.org/10.1177/1099636217714181.
  9. Arefi, M., Kiani, M. and Zamani, M.H. (2020), "Nonlocal strain gradient theory for the magneto-electro-elastic vibration response of a porous FG-core sandwich nanoplate with piezomagnetic face sheets resting on an elastic foundation", J. Sandw. Struct. Mater., 22(7), 2157-2185. https://doi.org/10.1177/1099636218795378.
  10. Arefi, M., Moghaddam, S.K., Bidgoli, E.M.R., Kiani, M. and Civalek, O. (2021), "Analysis of graphene nanoplatelet reinforced cylindrical shell subjected to thermo-mechanical loads", Compos. Struct., 255(1), 112924. https://doi.org/10.1016/j.compstruct.2020.112924.
  11. Bai, B., Bai, F., Li, X., Ni, Q. and Jia, X. (2023), "A high-strength red mud-fly ash geopolymer and the implications of curing temperature", Powd. Technol., 416, 118242. https://doi.org/10.1016/j.powtec.2023.118242.
  12. Bai, B., Bai, F., Li, X., Ni, Q., Jia, X. and Wu. H. (2022), "The remediation efficiency of heavy metal pollutants in water by industrial red mud particle waste", Environ. Technol. Innov., 28, 102944. https://doi.org/10.1016/j.eti.2022.102944.
  13. Bai, B., Wang, J., Zhai, Z. and Xu, T. (2017), "The penetration processes of red mud filtrate in a porous medium by seepage", Transp. Porous Med., 117, 207-227. https://doi.org/10.1007/s11242-017-0829-9.
  14. Bai, B., Xu, T., Nie, Q. and Li, P. (2020), "Temperature-driven migration of heavy metal Pb2+ along with moisture movement in unsaturated soils", Int. J. Heat Mass Transf., 153, 119573. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119573.
  15. Cui, W., Caracoglia, L., Zhao, L. and Ge, Y. (2023a), "Examination of occurrence probability of vortex-induced vibration of long-span bridge decks by Fokker-Planck-Kolmogorov equation", Struct. Saf., 105, 102369. https://doi.org/10.1016/j.strusafe.2023.102369.
  16. Cui, W., Zhao, L. and Ge, Y. (2023b), "Wind-induced buffeting vibration of long-span bridge considering geometric and aerodynamic nonlinearity based on reduced-order modeling", J. Struct. Eng., 149(11), 4023160. https://doi.org/10.1061/JSENDH.STENG-11543.
  17. Dehsaraji, M.L., Arefi, M. and Loghman, A. (2020), "Three dimensional free vibration analysis of functionally graded nano cylindrical shell considering thickness stretching effect", Steel Compos. Struct., 34(5), 657-670. https://doi.org/10.12989/scs.2020.34.5.657.
  18. Fan, W., Liu, T., Wu, F., Wang, S., Ge, S., Li, Y., ... and Li, Y. (2023), "An antisweat interference and highly sensitive temperature sensor based on Poly (3, 4-ethylenedioxythiophene)-Poly (st yrenesulfonate) fiber coated with Polyurethane/Graphene for real-time monitoring of body temperature", ACS Nano, 17(21), 21073-21082. https://doi.org/10.1021/acsnano.3c04246.
  19. Fan, W., Wang, Q., Rong, K., Shi, Y., Peng, W., Li, H., ... and Ge, S. (2024), "MXene enhanced 3D needled waste denim felt for high-performance flexible supercapacitors", Nano Micro Lett., 16(1), 36. https://doi.org/10.1007/s40820-023-01226-y.
  20. Farrokhi Nia, A., Badnava, S., Hamouda, A.M.S., Mirjavadi, S.S. and Forsat, M. (2020), "Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells", Adv. Nano. Res., 8(2), 149-156. http://doi.org/10.12989/anr.2020.8.2.149.
  21. Foong, S.Y., Liew, R.K., Yang, Y., Cheng, Y.W., Yek, P.N.Y., Mahari, W.A.W., ... and Lam, S.S. (2020), "Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions", Chem. Eng. J., 389, 124401. https://doi.org/10.1016/j.cej.2020.124401.
  22. Fu, Z.H., Yang, B.J., Shan, M.L., Li, T., Zhu, Z.Y., Ma, C.P. and Gao, W. (2020), "Hydrogen embrittlement behavior of SUS301L-MT stainless steel laser-arc hybrid welded joint localized zones", Cor. Sci., 164, 108337. https://doi.org/10.1016/j.corsci.2019.108337.
  23. Ge, S., Foong, S.Y., Ma, N.L., Liew, R.K., Mahari, W.A.W., Xia, C., ... and Lam, S.S. (2020b), "Vacuum pyrolysis incorporating microwave heating and base mixture modification: an integrated approach to transform biowaste into eco-friendly bioenergy products", Renewab. Sustainab. Energy Rev., 127, 109871. https://doi.org/10.1016/j.rser.2020.109871.
  24. Ge, S., Ma, N.L., Jiang, S., Ok, Y.S., Lam, S.S., Li, C., ... and Sonne, C. (2020a), "Processed bamboo as a novel formaldehyde-free high-performance furniture biocomposite", ACS Appl. Mater. Interf., 12(27), 30824-30832. https://doi.org/10.1021/acsami.0c07448.
  25. Ghadiri, M. and Safarpour, H. (2016), "Free vibration analysis of embedded magneto-electro-thermo-elastic cylindrical nanoshell based on the modified couple stress theory", Appl. Phys. A, 122, 833. https://doi.org/10.1007/s00339-016-0365-4.
  26. Ghadiri, M. and SafarPour, H. (2017), "Free vibration analysis of size-dependent functionally graded porous cylindrical microshells in thermal environment", J. Therm. Stress., 40(1), 55-71. https://doi.org/10.1080/01495739.2016.1229145.
  27. Gharooni, H., Ghannad, M. and Nejad, M.Z. (2016), "Thermo-elastic analysis of clamped-clamped thick FGM cylinders by using third-order shear deformation theory", Lat. Am. J. Solids Struct., 13(4), 750-774. https://doi.org/10.1590/1679-78252254.
  28. Gholami, R., Darvizeh, A., Ansari, R. and Hosseinzadeh, M. (2014), "Size-dependent axial buckling analysis of functionally graded circular cylindrical microshells based on the modified strain gradient elasticity theory", Meccanica, 49(7), 1679-1695. https://doi.org/10.1007/s11012-014-9944-7.
  29. Ghorbani, K., Mohammadi, K., Rajabpour, A. and Ghadiri, M. (2019), "Surface and size-dependent effects on the free vibration analysis of cylindrical shell based on Gurtin-Murdoch and nonlocal strain gradient theories", J. Phys. Chem. Solids, 129, 140-150. https://doi.org/10.1016/j.jpcs.2018.12.038.
  30. Hashemi Kachapi, S.H. (2020), "Nonlinear and nonclassical vibration analysis of double walled piezoelectric cylindrical nanoshell", Adv. Nano. Res., 9(4), 277-294. http://doi.org/10.12989/anr.2020.9.4.277.
  31. Hashemi, R., Mirzaei, M. and Adlparvar, M.R. (2021), "On thermally induced instability of FG-CNTRC cylindrical panels", Adv. Nano. Res., 10(1), 43-57. http://doi.org/10.12989/anr.2021.10.1.043.
  32. Huang, H., Guo, M., Zhang, W., Zeng, J., Yang, K. and Bai, H. (2021), "Numerical investigation on the bearing capacity of RC columns strengthened by HPFL-BSP under combined loadings", J. Build. Eng., 39, 102266. https://doi.org/10.1016/j.jobe.2021.102266.
  33. Huang, H., Yao, Y., Liang, C. and Ye, Y. (2022a), "Experimental study on cyclic performance of steel-hollow core partially encased composite spliced frame beam", Soil. Dyn. Earthq. Eng., 163, 107499. https://doi.org/10.1016/j.soildyn.2022.107499.
  34. Huang, H., Yao, Y., Zhang, W. and Zhou, L. (2023), "A push-out test on partially encased composite column with different positions of shear studs", Eng. Struct., 289, 116343. https://doi.org/10.1016/j.engstruct.2023.116343.
  35. Huang, X., Chang, L., Zhao, H. and Cai, Z. (2022b), "Study on craniocerebral dynamics response and helmet protective performance under the blast waves", Mater. Des., 224, 111408. https://doi.org/10.1016/j.matdes.2022.111408.
  36. Jabbari, M., Sohrabpour, S. and Eslami, M.R. (2002), "Mechanical and thermal stresses in a functionally graded hollow cylinder due to radially symmetric loads", Int. J. Press. Vessel. Pip., 79(7), 493-497. https://doi.org/10.1016/S0308-0161(02)00043-1.
  37. Ke, L.L., Wang, Y.S. and Reddy, J.N. (2014), "Thermo-electro-mechanical vibration of size-dependent piezoelectric cylindrical nanoshells under various boundary conditions", Compos. Struct., 116, 626-636. https://doi.org/10.1016/j.compstruct.2014.05.048.
  38. Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2014), "The size-dependent vibration of embedded magneto-electro-elastic cylindrical nanoshells", Smart Mater. Struct., 23, 125036. https://doi.org/10.1088/0964-1726/23/12/125036.
  39. Lam, S.S., Yek, P.N.Y., Ok, Y.S., Chong, C.C., Liew, R.K., Tsang, D.C., ... and Peng, W. (2020), "Engineering pyrolysis biochar via single-step microwave steam activation for hazardous landfill leachate treatment", J. Hazard. Mater., 390, 121649. https://doi.org/10.1016/j.jhazmat.2019.121649.
  40. Li, J., Wang, Z., Zhang, S., Lin, Y., Jiang, L. and Tan, J. (2024), "Task incremental learning-driven digital-twin predictive modeling for customized metal forming product manufacturing process", Robot. Comput Integ. Manuf., 85, 102647. https://doi.org/10.1016/j.rcim.2023.102647.
  41. Lori Dehsaraji, M., Arefi, M. and Loghman, A. (2021), "Size dependent free vibration analysis of functionally graded piezoelectric micro/nano shell based on modified couple stress theory with considering thickness stretching effect", Def. Tech., 17(1), 119-134. https://doi.org/10.1016/j.dt.2020.01.001.
  42. Loy, C.T., Lam, K.Y. and Reddy, J.N. (1999), "Vibration of functionally graded cylindrical shells", Int. J. Mech. Sci., 41(3), 309-324. https://doi.org/10.1016/S0020-7403(98)00054-X.
  43. Luo, Y., Liu, X., Chen, F., Zhang, H. and Xiao, X. (2023), "Numerical simulation on crack-inclusion interaction for rib-to-deck welded joints in orthotropic steel deck", Metals, 13(8), 1402. https://doi.org/10.3390/met13081402.
  44. Ma, H.M., Gao, X.L. and Reddy, J.N. (2008), "A microstructure-dependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solids., 56(12), 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007.
  45. Mohammad-Rezaei Bidgoli, E. and Arefi, M. (2021), "Free vibration analysis of micro plate reinforced with functionally graded graphene nanoplatelets based on modified strain-gradient formulation", J. Sandw. Struct. Mater., 23(2), 436-472. https://doi.org/10.1177/1099636219839302.
  46. Mohammadi, M., Arefi, M., Dimitri, R. and Tornabene, F. (2019), "Higher-order thermo-elastic analysis of FG-CNTRC cylindrical vessels surrounded by a Pasternak foundation", Nanomater., 9(1), 79. https://doi.org/10.3390/nano9010079.
  47. Peng, W., Lam, S.S. and Sonne, C. (2020), "Support Austria's glyphosate ban", Sci., 367, 257-258. https://doi.org/10.1126/science.aba5642.
  48. Pradhan, S.C., Loy, C.T., Lam, K.Y. and Reddy, J.N. (2000), "Vibration characteristics of functionally graded cylindrical shells under various boundary conditions", Appl. Acoust., 61(1), 111-129. https://doi.org/10.1016/S0003-682X(99)00063-8.
  49. Reddy, J.N. (2011), "Microstructure-dependent couple stress theories of functionally graded beams", J. Mech. Phys. Solids., 59(11), 2382-2399. https://doi.org/10.1016/j.jmps.2011.06.008.
  50. Sahmani, S., Aghdam, M.M. and Akbarzadeh, A.H. (2016), "Size-dependent buckling and postbuckling behavior of piezoelectric cylindrical nanoshells subjected to compression and electrical load", Mater. Des., 105, 341-351. https://doi.org/10.1016/j.matdes.2016.05.065.
  51. Santos, H., Soares, C.M.M., Soares, C.A.M. and Reddy, J.N. (2009), "A semi-analytical finite element model for the analysis of cylindrical shells made of functionally graded materials", Compos. Struct., 91(4), 427-432. https://doi.org/10.1016/j.compstruct.2008.03.004.
  52. Shi, X., Yang, Y., Zhu, X. and Huang, Z. (2024), "Stochastic dynamics analysis of the rocket shell coupling system with circular plate fasteners based on spectro-geometric method", Compos. Struct., 329, 117727. https://doi.org/10.1016/j.compstruct.2023.117727.
  53. Sun, L., Liang, T., Zhang, C. and Chen, J. (2023), "The rheological performance of shear-thickening fluids based on carbon fiber and silica nanocomposite", Phys. Fluids, 35(3), 32002. https://doi.org/10.1063/5.0138294.
  54. Sun, Y., Fan, W., Song, C., Gao, X., Liu, T., Song, W., ... and Li, S. (2022), "Effects of stitch yarns on interlaminar shear behavior of three-dimensional stitched carbon fiber epoxy composites at room temperature and high temperature", Adv. Compos. Hybrid Mater., 5(3), 1951-1965. https://doi.org/10.1007/s42114-022-00526-y.
  55. Tadi Beni, Y., Mehralian, F. and Razavi, H. (2015), "Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory", Compos. Struct., 120, 65-78. https://doi.org/10.1016/j.compstruct.2014.09.065.
  56. Tadi Beni, Y., Mehralian, F. and Zeighampour, H. (2016), "The modified couple stress functionally graded cylindrical thin shell formulation", Mech. Adv. Mater. Struct., 23(7), 791-801. https://doi.org/10.1080/15376494.2015.1029167.
  57. Tohidi, H., Hosseini-Hashemi S.H. and Maghsoudpour, A. (2018), "Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory", Smart Struct. Syst., 22(5), 527-546. https://doi.org/10.12989/sss.2018.22.5.527.
  58. Tohidi, H., Hosseini-Hashemi, S.H., Maghsoudpour, A. and Etemadi, S. (2017), "Strain gradient theory for vibration analysis of embedded CNT-reinforced micro Mindlin cylindrical shells considering agglomeration effects", Struct. Eng. Mech., 62(5), 551-565. https://doi.org/10.12989/sem.2017.62.5.551.
  59. Tsiatas, G.C. (2009), "A new Kirchhoff plate model based on a modified couple stress theory", Int. J. Solids. Struct., 46(13), 2757-2764. https://doi.org/10.1016/j.ijsolstr.2009.03.004.
  60. Wang, C., Su, J., Liu, T., Ge, S., Liew, R.K., Zhang, H., ... and Fan, W. (2023), "A sustainable strategy to transform cotton waste into renewable cellulose fiber self-reinforcing composite paper", J. Clean. Prod., 429, 139567. https://doi.org/10.1016/j.jclepro.2023.139567.
  61. Wang, Q. and Varadan, V.K. (2007), "Application of nonlocal elastic shell theory in wave propagation analysis of carbon nanotubes", Smart Mater. Struct., 16, 178. https://doi.org/10.1088/0964-1726/16/1/022.
  62. Wei, L. and Qing, H. (2022), "Bending, buckling and vibration analysis of bi-directional functionally graded circular/annular microplate based on MCST", Compos. Struct., 292, 115633. https://doi.org/10.1016/j.compstruct.2022.115633.
  63. Xia, B., Huang, X., Chang, L., Zhang, R., Liao, Z. and Cai, Z. (2023), "The arrangement patterns optimization of 3D honeycomb and 3D re-entrant honeycomb structures for energy absorption", Mater. Toda. Commun., 35, 105996. https://doi.org/10.1016/j.mtcomm.2023.105996.
  64. Xiang, Y., Wang, Z., Zhang, S., Jiang, L., Lin, Y. and Tan, J. (2024), "Cross-sectional performance prediction of metal tubes bending with tangential variable boosting based on parameters-weight-adaptive CNN", Exp. Syst. Appl., 237, 121465. https://doi.org/10.1016/j.eswa.2023.121465.
  65. Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids. Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
  66. Yang, T., Xiang, G., Cai, J., Wang, L., Lin, X., Wang, J. and Zhou, G. (2024), "Five-DOF nonlinear tribo-dynamic analysis for coupled bearings during start-up", Int. J. Mech. Sci., 269, 109068. https://doi.org/10.1016/j.ijmecsci.2024.109068.
  67. Yazdani, R., Mohammadimehr, M. and Rousta Navi, B. (2019), "Free vibration of Cooper-Naghdi micro saturated porous sandwich cylindrical shells with reinforced CNT face sheets under magneto-hydro-thermo-mechanical loadings", Struct. Eng. Mech., 70(3), 351-365. https://doi.org/10.12989/sem.2019.70.3.351.
  68. Yue, X., Ma, N.L., Sonne, C., Guan, R., Lam, S.S., Van Le, Q., ... and Peng, W. (2021), "Mitigation of indoor air pollution: A review of recent advances in adsorption materials and catalytic oxidation", J. Hazard. Mater., 405, 124138. https://doi.org/10.1016/j.jhazmat.2020.124138.
  69. Zandifaez, P., Akbar Nezhad, A., Zhou, H. and Dias-da-Costa, D. (2024), "A systematic review on energy-efficient concrete: Indicators, performance metrics, strategies, and future trends", Renewab. Sustainab. Energy Rev., 194, 114306. https://doi.org/10.1016/j.rser.2024.114306.
  70. Zeighampour, H. and Tadi Beni, Y. (2014), "Cylindrical thin-shell model based on modified strain gradient theory", Int. J. Eng. Sci., 78, 27-47. https://doi.org/10.1016/j.ijengsci.2014.01.004.
  71. Zeighampour, H. and Tadi Beni, Y. (2015), "A shear deformable cylindrical shell model based on couple stress theory", Arch. Appl. Mech., 85, 539-553. https://doi.org/10.1007/s00419-014-0929-8.
  72. Zeighampour, H., Tadi Beni, Y. and Karimipour, I. (2016), "Torsional vibration and static analysis of the cylindrical shell based on strain gradient theory", Arab. J. Sci. Eng., 41(5) 1713-1722. https://doi.org/10.1007/s13369-015-1940-2.
  73. Zhang, B., He, Y., Liu, D., Shen, L. and Lei, J. (2015), "Free vibration analysis of four-unknown shear deformable functionally graded cylindrical microshells based on the strain gradient elasticity theory", Compos. Struct., 119, 578-597. https://doi.org/10.1016/j.compstruct.2014.09.032.
  74. Zhang, Y., Shen, G., Lam, S.S., Ansar, S., Jung, S.C., Ge, S., ... and Fan, W. (2023), "A waste textiles-based multilayer composite fabric with superior electromagnetic shielding, infrared stealth and flame retardance for military applications", Chem. Eng. J., 471, 144679. https://doi.org/10.1016/j.cej.2023.144679.
  75. Zhu, Q., Chen, J., Gou, G., Chen, H. and Li, P. (2017), "Ameliorated longitudinal critically refracted-Attenuation velocity method for welding residual stress measurement", J. Mater. Proc. Technol., 246, 267-275. https://doi.org/10.1016/j.jmatprotec.2017.03.022.