DOI QR코드

DOI QR Code

Seismic fragility analysis of corroded RC pier strengthened by engineered cementitious composites

  • Yan Liang (School of Civil Engineering, Zhengzhou University) ;
  • Jing-Xiao Shu (School of Civil Engineering, Zhengzhou University) ;
  • Cheng-Xin Zhao (School of Civil Engineering, Zhengzhou University) ;
  • Xi Dong Wang (School of Civil Engineering, Zhengzhou University) ;
  • Guang Yu Yang (Wsgri Engineering & Surveying Incorporation Limited)
  • Received : 2023.04.28
  • Accepted : 2024.02.26
  • Published : 2024.04.25

Abstract

When a reinforced concrete (RC) structure is exposed to a corrosive environment for an extended period of time, the material qualities deteriorate, resulting in a loss in seismic performance. Engineered Cementitious Composites (ECC) have been used to reinforce the corroded RC structure, which can achieve reinforcement effectiveness for a small change in cross-section size. In this work, finite element models of unjacketed RC pier and ECC jacketed pier were established and verified by experimental tests, with the buckling effect of longitudinal reinforcement considered. Compared with the unjacketed pier, the displacement of the pier top of the ECC jacketed pier was reduced by about 9.52% under earthquake action. In the case of moderate and major earthquakes, the probability of exceedance of ECC jacketed pier is significantly reduced. For the case of rare earthquake loading, with the ECC jacket, the e of the pier experiencing serious damage and complete damage states is reduced by 10.29% and 29.78%, respectively.

Keywords

Acknowledgement

The authors are grateful for the financial support from the National Natural Science Foundation of China (52308220).

References

  1. Afsar Dizaj, E., Madandoust, R., Kashani, M.M. (2018), "Exploring the impact of chloride-induced corrosion on seismic damage limit states and residual capacity of reinforced concrete structures", Struct. Infrastr. Eng., 14(6), 714-729. https://doi.org/10.1080/15732479.2017.1359631.
  2. Asghshahr, M.S. (2022), "Sampling-based seismic reliability analysis of the corroded reinforced concrete bridge bent", Struct., 43, 944-958. https://doi.org/10.1016/j.istruc.2022.07.024.
  3. Bahaei, P.S., Behnamfar, F. and Samani, A.K. (2021), "Dynamic response of cylindrical water storage tanks made by ECC compared to normal concrete", Earthq. Struct., 20(5), 513-529. https://doi.org/10.12989/eas.2021.20.5.513.
  4. Bai, Y., Dai, J. and Teng, J. (2017a), "Monotonic stress-strain behavior of steel rebars embedded in FRP-confined concrete including buckling", Am. Soc. Civil Eng., 21(5), 04017043. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000823.
  5. Bai, Y., Dai, J. and Teng, J.G. (2017b), "Buckling of steel reinforcing bars in FRP-confined RC columns: An experimental study", Constr. Build. Mater., 140, 403-415. https://doi.org/10.1016/j.conbuildmat.2017.02.149.
  6. CJJ/T 239 (2016), Technical Specifications for Structural Strengthening of Urban Bridges, Ministry of Housing and Urban Rural Development of the People's Republic of China, Beijing, China.
  7. Dhakal, R.P. and Maekwa, K. (2002), "Modeling for postyield buckling of reinforcement", J. Struct. Eng., 128(9), 1139-1147. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1139).
  8. Deng, L., Lei, L., Lai, S., Liao, L. and Zhou, Z. (2021), "Experimental study on the axial tensile properties of FRP grid-reinforced ECC composites", Mater., 14, 3936. https://doi.org/10.3390/ma14143936.
  9. Deng, M., Zhang, Y. and Li, Q. (2018), "Shear strengthening of RC short columns with ECC jacket: Cyclic behavior tests", Eng. Struct., 160, 535-545. https://doi.org/10.1016/j.engstruct.2018.01.061.
  10. Deng, M.K., Zhang, Y.X. and Hu, H.B. (2017), "Experimental study on seismic behavior of reinforced concrete column strengthened with high ductile concrete", J. Build. Struct., 38, 86-94. https://doi.org/10.14006/j. jzjgxb.2017.06.010.
  11. Dhakal, R.P. and Maekawa, K. (2002), "Modeling for postyield buckling of reinforcement", J. Struct. Eng., 128, 1139-1147. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1139).
  12. Du, Y.G., Clark, L. and Chan, A. (2005), "Residual capacity of corroded reinforcing bars", Mag. Concrete Res., 57, 135-147. https://doi.org/10.1680/macr.2005.57.3.135.
  13. Frank, T.E., Lepech, M.D. and Billington, S.L. (2017), "Experimental testing of reinforced concrete and reinforced ECC flexural members subjected to various cyclic deformation histories", Mater. Struct., 50, 1-12. https://doi.org/10.1617/s11527-017-1102-y.
  14. Fang, Z.H., Jian, X.Y. and Zhou, Y. (2016), "Hysteretic model of reinforcement considering buckling", J. Wuhan Univ. (Eng. Edit.), 49, 254-258. https://doi.org/10.14188/j.1671-8844.2016-02-016.
  15. GB 18306-2015 (2015), Seismic Ground Motion Parameter Zoning Map of China, Beijing China.
  16. Gencturk, B., Elnashai, A.S., Lepech, M.D. and Billington, S. (2013), "Behavior of concrete and ECC structures under simulated earthquake motion", J. Struct. Eng., 139, 389-399. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000667.
  17. Ghosh, J. and Padgett, J.E. (2010), "Aging considerations in the development of time-dependent seismic fragility curves", J. Struct. Eng., 136(12), 1797-1511. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000260.
  18. Giamundo, V., Lignola, G.P., Prota, A. and Manfredi, A.G. (2014), "Analytical evaluation of FRP wrapping effectiveness in restraining reinforcement bar buckling", Am. Soc. Civil Eng., 140(7), 04014043. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000667.
  19. Han, T.S., Feenstra, P.H. and Billington, S.L. (1999), "Simulation of highly ductile fiber-reinforced cement-based composite components under cyclic loading", ACI Struct. J., 100(6), 749-757. https://doi.org/10.14359/12841.
  20. HAZUS99 (1999), Earthquake Loss Estimation Methodology: User's Manual, Federal Emergency Management Agency, Washington, D.C., USA.
  21. JTG/T 2231 (2020), Specifications for Seismic Design of Highway, Ministry of transport of the people's Republic of China, Beijing, China.
  22. Khan, F.A., Khan, S.W., Shahzada, K., Ahmad, N., Rizwan, M., Fahim, M. and Rashid, M. (2022), "Shake-table tests on moment-resisting frames by introducing engineered cementitious composite in plastic hinge length", Earthq. Struct., 23(1), 23-34. https://doi.org/10.12989/eas.2022.23.1.023.
  23. Li, C.K.Y.L. (1992), "Steady-state and Multiple cracking of short random fiber composites", J. Eng. Mech., 118, 2246-2264. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:11(2246).
  24. Li, L.F., Wu, W.P., Hu, S.C. and Liu, S.M. (2016), "Time-dependent seismic fragility analysis of high pier bridge based on chloride ion induced corrosion", Eng. Mech., 33(1), 163-170. https://doi.org/10.6052/j.issn.1000-4750.2014.06.0530.
  25. Li, M., Luu, H.C., Wu, C., Mo, Y. L. and Hsu, T.T.C. (2014), "Seismic performance of reinforced engineered cementitious composite shear walls", Earthq. Struct., 7(5), 691-704. https://doi.org/10.12989/eas.2014.7.5.691.
  26. Li, Y., Liang, X.W. and Deng, M.K. (2012b), "A constitutive model for high performance PVA fiber reinforced cement matrix composites under conventional triaxial compression", Eng. Mech., 29, 106-113.
  27. Liang, Y., Luo, X.Y. and Xiao, X.Q. (2012a), "Experimental study on bond slip behavior of corroded reinforced concrete", Indust. Arch., 42, 95-100. https://doi.org/10.13204/j.gyjz2012.10.023.
  28. Liang, Y., Yan, J.L., Qian, W.X., Cheng, Z.Q. and Chen, H. (2021), "Analysis of collapse resistance of offshore rigid frame - continuous girder bridge based on time-varying fragility", Marine Struct., 75, 102844. https://doi.org/10.1016/j.marstruc.2020.102844.
  29. Liang, Y., Yan, J.L., Cheng, Z.Q., Chen, P. and Ren, C. (2020), "Time-varying seismic fragility analysis of offshore bridges with continuous rigid-frame girder under main aftershock sequences", J. Bridge Eng., 25(8), 04020055. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001578.
  30. Liu, Y.P. and Weyers, R.E. (1998), "Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete structures", Mater. J., 95, 675-680. https://doi.org/10.14359/410.
  31. Ma, Y., Zhang, J., Wang, L. and Liu, Y. (2013), "Probabilistic prediction with Bayesian updating for strength degradation of RC bridge beams", Struct. Saf., 44, 102-109. https://doi.org/10.1016/j.strusafe.2013.07.006.
  32. Majumder, S. and Saha, S. (2021), "Shear behaviour of RC beams strengthened using geosynthetic materials by external and internal confinement", Struct., 32, 1665-1678. https://doi.org/10.1016/j.istruc.2021.03.107.
  33. Niasar, A.N., Alaee, F.J. and Zamani, S.M. (2020), "Parametric study on the lateral strength of URM wall, retrofitted using ECC mortar", Earthq. Struct., 18(4), 451-466. https://doi.org/10.12989/eas.2020.18.4.451.
  34. Pan, J., Lu, B., Gu, D., Xia, Z. and Xia, T. (2015), "Mechanical behavior of rectangular steel-reinforced ECC/concrete composite column under eccentric compression", Transac. Tianjin Univ., 21, 269-277. https://doi.org/10.1007/s12209-015-2410-3.
  35. Qian, H., Zhang, Q., Zhang, X., Deng, E. and Gao, J. (2022), "Experimental investigation on bending behavior of existing RC Beam retrofitted with SMA-ECC composites materials", Mater., 15, 12. https://doi.org/10.3390/ma15010012.
  36. Qiu, J.L. and Gong, J.X. (2016), "Research progress on buckling of longitudinal bars of reinforced concrete columns under earthquake", J. Civil Eng., 49, 50-62. https://doi.org/10.15951/j.tmgcxb.2016.05.005.
  37. Qian, J.R., Cheng, L.R. and Zhou, D.L. (2002), "Behavior of axially loaded concrete columns confined with ordinary hoops", J. Tsinghua Univ., 42(10), 1369-1373. https://doi.org/10.16511/j.cnki.qhdxxb.2002.10.02.
  38. Saleem, S., Pimanmas, A., Qureshi, M.I. and Rattanapitikon, W. (2021), "Axial behavior of PET FRP-confined reinforced concrete", Am. Soc. Civil Eng., 25(1), 04020079. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001092.
  39. Shi, Q.X., Niu, D.T. and Yan, G.Y. (2000), "Experimental study on restoring force performance of corroded reinforced concrete compression bending members under repeated load", Earthq. Eng. Vib., 2000, 44-50. https://doi.org/10.13197/j.eeev.2000.04.007.
  40. Vecchio, F.J. (1999), "Towards cyclic load modeling of reinforced concrete", Struct. J., 96, 193-202.
  41. Victor, C.L. (2019), Engineered Cementitious Composites (ECC): Bendable Concrete for Sustainable and Resilient Infrastructure, Springer, Berlin, Germany.
  42. Vu, K.A.T. and Stewart, M.G. (2000), "Structural reliability of concrete bridges including improved chloride-induced corrosion models", Struct. Saf., 22, 313-333. https://doi.org/10.1016/S0167-4730(00)00018-7.
  43. Xu, L., Pan, J. and Chen, J. (2017), "Mechanical behavior of ECC and ECC/RC composite columns under reversed cyclic loading", Am. Soc. Civil Eng., 29(9), 04017097. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001950.
  44. Xuan, C., Yan, Z.G., Al-Gemeel, A.N. and Xiong, Z.M. (2021), "Compressive behaviour of concrete column confined with basalt textile reinforced ECC", Eng. Struct., 243, 112651. https://doi.org/10.1016/j.engstruct.2021.112651.
  45. Yan, J.L., Liang, Y., Zhao, B.Y., Qian, W.X. and Chen, H. (2020), "Influence of time-varying attenuation effect of damage index on seismic fragility of bridge", Earthq. Struct., 19(4), 287-301. https://doi.org/10.12989/eas.2020.19.4.287.
  46. Yuan, F., Chen, M., Zhou, F. and Yang, C. (2018), "Behaviors of steel-reinforced ECC columns under eccentric compression", Constr. Build. Mater., 185, 402-413. https://doi.org/10.1016/j.conbuildmat.2018.07.100.
  47. Zhang, R., Meng, Q., Shui, Q., He, W., Chen, K., Liang, M. and Sun, Z. (2019), "Cyclic response of RC composite bridge columns with precast PP-ECC jackets in the region of plastic hinges", Compos. Struct., 221, 110844. https://doi.org/10.1016/j.compstruct.2019.04.016.
  48. Zhou, J., Pan, J. and Leung, C.K.Y. (2015), "Mechanical behavior of fiber-reinforced engineered cementitious composites in uniaxial compression", J. Mater. Civil Eng., 27(1), 04014111. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001034.
  49. Zhou, J., Shen, W. and Wang, S. (2017), "Experimental study on torsional behavior of FRC and ECC beams reinforced with GFRP bars", Constr. Build. Mater., 152, 74-81. https://doi.org/10.1016/j.conbuildmat.2017.06.131.