DOI QR코드

DOI QR Code

Thermal post-buckling behavior of imperfect graphene platelets reinforced metal foams plates resting on nonlinear elastic foundations

  • Yin-Ping Li (College of Mechanical and Vehicle Engineering, Chongqing University) ;
  • Gui-Lin She (College of Mechanical and Vehicle Engineering, Chongqing University) ;
  • Lei-Lei Gan (College of Mechanical and Vehicle Engineering, Chongqing University) ;
  • H.B. Liu (College of Mechanical and Electric Engineering, Hunan University of Science and Technology)
  • Received : 2023.07.09
  • Accepted : 2024.02.05
  • Published : 2024.04.25

Abstract

In this paper, the thermal post-buckling behavior of graphene platelets reinforced metal foams (GPLRMFs) plate with initial geometric imperfections on nonlinear elastic foundations are studied. First, the governing equation is derived based on the first-order shear deformation theory (FSDT) of plate. To obtain a single equation that only contains deflection, the Galerkin principle is employed to solve the governing equation. Subsequently, a comparative analysis was conducted with existing literature, thereby verifying the correctness and reliability of this paper. Finally, considering three GPLs distribution types (GPL-A, GPL-B, and GPL-C) of plates, the effects of initial geometric imperfections, foam distribution types, foam coefficients, GPLs weight fraction, temperature changes, and elastic foundation stiffness on the thermal post-buckling characteristics of the plates were investigated. The results show that the GPL-A distribution pattern exhibits the best buckling resistance. And with the foam coefficient (GPLs weight fraction, elastic foundation stiffness) increases, the deflection change of the plate under thermal load becomes smaller. On the contrary, when the initial geometric imperfection (temperature change) increases, the thermal buckling deflection increases. According to the current research situation, the results of this article can play an important role in the thermal stability analysis of GPLRMFs plates.

Keywords

References

  1. Aslan, N. and Aksakal, B. (2021), "Effect of graphene reinforcement on hybrid bioceramic coating deposited on the produced porous Ti64 alloys", J. Porous. Mater., 28(4), 1301-1313. https://doi.org/10.1007/s10934-021-01081-5.
  2. Anirudh, B., Ben Zineb, T., Polit, O., Ganapathi, M. and Prateek, G. (2020), "Nonlinear bending of porous curved beams reinforced by functionally graded nanocomposite graphene platelets applying an efficient shear flexible finite element approach", Int. J. Nonlinear Mech., 119, 103346. https://doi.org/10.1016/j.ijnonlinmec.2019.103346.
  3. Abazid, M.A. (2020), "2D magnetic field effect on the thermal buckling of metal foam nanoplates reinforced with FG-GPLs lying on Pasternak foundation in humid environment", Eur. Phys. J. Plus, 135(11), 910. https://doi.org/10.1140/epjp/s13360-020-00905-8.
  4. Arshid, E., Amir, S. and Loghman, A. (2020), "Static and dynamic analyses of FG-GNPs reinforced porous nanocomposite annular micro-plates based on MSGT", Int. J. Mech. Sci., 180, 105656. https://doi.org/10.1016/j.ijmecsci.2020.105656.
  5. Bao, Q.L. and Loh, K.P. (2012), "Graphene photonics, plasmonics, and broadband optoelectronic devices", ACS Nano., 6(5), 3677-3694. https://doi.org/10.1021/nn300989g.
  6. Chen, D., Yang, J. and Kitipornchai, S. (2017), "Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams", Compos. Sci. Technol., 142, 235-245. https://doi.org/10.1016/j.compscitech.2017.02.008.
  7. Chai, Q.D. and Wang, Y.Q. (2022), "Traveling wave vibration of graphene platelet reinforced porous joined conical-cylindrical shells in a spinning motion", Eng. Struct., 252, 113718. https://doi.org/10.1016/j.engstruct.2021.113718.
  8. Chen, B., Xu, Q., Zhu, B., Yang, Y.K. and Li, Y.H. (2022), "Buckling and postbuckling behaviors of symmetric/asymmetric double-beam systems", Int. J. Mech. Sci., 235, 107712. https://doi.org/10.1016/j.ijmecsci.2022.107712.
  9. Chaabani, H., Mesmoudi, S., Boutahar, L. and El Bikri, K. (2022), "Buckling of porous FG sandwich plates subjected to various non-uniform compressions and resting on Winkler-Pasternak elastic foundation using a finite element model based on the high-order shear deformation theory", Acta Mech., 233(12), 5359-5376. https://doi.org/10.1007/s00707-022-03388-z.
  10. Chinnapandi, L.B.M., Pitchaimani, J. and Eltaher, M.A. (2022), "Vibro-acoustics of functionally graded porous beams subjected to thermo-mechanical loads", Steel Compos. Struct., 44(6), 815-829. https://doi.org/10.12989/scs.2022.44.6.815.
  11. Daikh, A.A., Belarbi, M.O., Ahmed, D., Houari, M.S.A., Avcar, M., Tounsi, A. and Eltaher, M.A. (2023), "Static analysis of functionally graded plate structures resting on variable elastic foundation under various boundary conditions", Acta Mech., 234(2), 775-806. https://doi.org/10.1007/s00707-022-03405-1.
  12. Ding, H.X. and She, G.L. (2024), "Nonlinear combined resonances of axially moving graphene platelets reinforced metal foams cylindrical shells under forced vibrations", Nonlinear Dyn., 112, 419-441. https://doi.org/10.1007/s11071-023-09059-5
  13. Ding, H.X., Eltaher, M.A. and She, G.L. (2023), "Nonlinear low-velocity impact of graphene platelets reinforced metal foams cylindrical shell: Effect of spinning motion and initial geometric imperfections", Aerosp. Sci. Technol., 140, 108435. https://doi.org/10.1016/j.ast.2023.108435.
  14. Gan, L.L. and She, G.L. (2024), "Nonlinear low-velocity impact of magneto-electro-elastic plates with initial geometric imperfection", Acta Astronaut., 214, 11-29. https://doi.org/10.1016/j.actaastro.2023.10.016.
  15. Ganapathi, M., Aditya, S., Shubhendu, S., Polit, O. and Ben Zineb, T. (2020), "Nonlinear supersonic flutter study of porous 2D curved panels including graphene platelets reinforcement effect using trigonometric shear deformable finite element", Int. J. Nonlinear Mech., 125, 103543. https://doi.org/10.1016/j.ijnonlinmec.2020.103543.
  16. Gao, W.L., Qin, Z.Y. and Chu, F.L. (2020), "Wave propagation in functionally graded porous plates reinforced with graphene platelets", Aerosp. Sci. Technol., 102, 105860. https://doi.org/10.1016/j.ast.2020.105860.
  17. Gao, K., Gao, W., Chen, D. and Yang, J. (2018), "Nonlinear free vibration of functionally graded graphene platelets reinforced porous nanocomposite plates resting on elastic foundation", Compos. Struct., 204, 831-846. https://doi.org/10.1016/j.compstruct.2018.08.013.
  18. Hai, T., Al-Masoudy, M.M. and Kumar, A. (2023), "Size-dependent free vibration analysis of honeycomb sandwich microplates integrated with piezoelectric actuators based on the modified strain gradient theory", Compos. Struct., 305, 116555. https://doi.org/10.1016/j.compstruct.2022.116555.
  19. Himeur, N., Mamen, B., Benguediab, S., Bouhadra, A., Menasria, A., Bouchouicha, B., Bourada, F., Benguediab, M. and Tounsi, A. (2022), "Coupled effect of variable Winkler-Pasternak foundations on bending behavior of FG plates exposed to several types of loading", Steel Compos. Struct., 44(3), 339-355. https://doi.org/10.12989/scs.2022.44.3.339.
  20. Javani, M., Kiani, Y. and Eslami, M.R. (2021a), "Geometrically nonlinear free vibration of FG-GPLRC circular plate on the nonlinear elastic foundation", Compos. Struct., 261, 113515. https://doi.org/10.1016/j.compstruct.2020.113515.
  21. Javani, M., Kiani, Y. and Eslami, M.R. (2021b), "Application of generalized differential quadrature element method to free vibration of FG-GPLRC T-shaped plates", Eng. Struct., 242, 112510. https://doi.org/10.1016/j.engstruct.2021.112510.
  22. Javani, M., Kiani, Y. and Eslami, M.R. (2021c), "Free vibration analysis of FG-GPLRC L-shaped plates implementing GDQE approach", Thin Wall. Struct., 162, 107600. https://doi.org/10.1016/j.tws.2021.107600.
  23. Kalavakunda, V. and Hosmane, N.S. (2016), "Graphene and its analogues", Nanotechnol. Rev., 5(4), 369-376. https://doi.org/10.1515/ntrev-2015-0068.
  24. Kiani, Y. and Mirzaei, M. (2019), "Isogeometric thermal postbuckling of FG-GPLRC laminated plates", Steel Compos. Struct., 32(6), 821-832. https://doi.org/10.12989/scs.2019.32.6.821.
  25. Kumar, V., Singh, S.J., Saran, V.H. and Harsha, S.P. (2023), "Vibration response analysis of tapered porous FGM plate resting on elastic foundation", Int. J. Struct. Stab. Dyn., 23(2), 2350024. https://doi.org/10.1142/S0219455423500244.
  26. Li, K.Y., Wu, D., Chen, X.J., Cheng, J., Liu, Z.Y., Gao, W. and Liu, M.Y. (2018), "Isogeometric Analysis of functionally graded porous plates reinforced by graphene platelets", Compos. Struct., 204, 114-130. https://doi.org/10.1016/j.compstruct.2018.07.059.
  27. Li, Y.P., She, G.L., Gan, L.L. and Liu, H.B (2023), "Nonlinear thermal post-buckling analysis of graphene platelets reinforced metal foams plates with initial geometrical imperfection", Steel Compos. Struct., 46(5), 649-658. https://doi.org/10.12989/scs.2023.46.5.649.
  28. Maalla, A., Huang, X.P. and Zhou, H.K. (2022), "Big data analysis via computer and semi numerical simulations for dynamic responses of complex nanosystems", Adv. Nano. Res., 13(6), 599-617. https://doi.org/10.12989/anr.2022.13.6.599.
  29. Nguyen, N.V., Lee, J. and Nguyen-Xuan, H. (2019), "Active vibration control of GPLs-reinforced FG metal foam plates with piezoelectric sensor and actuator layers", Compos. Part B: Eng., 172, 769-784. https://doi.org/10.1016/j.compositesb.2019.05.060.
  30. Nguyen, L.B., Nguyen, N.V., Thai, C.H., Ferreira, A.M.J. and Nguyen-Xuan, H. (2019), "An isogeometric Bezier finite element analysis for piezoelectric FG porous plates reinforced by graphene platelets", Compos. Struct., 214, 227-245. https://doi.org/10.1016/j.compstruct.2019.01.077.
  31. Nam, V.H., Dong, D.T., Van Doan, C. and Phuong, N.T. (2022), "Nonlinear buckling of axially compressed FG-GRCL stiffened cylindrical panels with a piezoelectric layer by using Reddy's higher-order shear deformation theory", Polym. Compos., 43(11), 7952-7966. https://doi.org/10.1002/pc.26931.
  32. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A.A. (2004), "Electric field effect in atomically thin carbon films", Sci., 306(5696), 666-669. https://doi.org/10.1126/science.1102896.
  33. Polit, O., Anant, C., Anirudh, B. and Ganapathi, M. (2019), "Functionally graded graphene reinforced porous nanocomposite curved beams: Bending and elastic stability using a higher-order model with thickness stretch effect", Compos. Part B: Eng., 166, 310-327. https://doi.org/10.1016/j.compositesb.2018.11.074.
  34. Pham, Q.H., Nguyen, P.C., Tran, V.K., Lieu, Q.X. and Tran, T.T. (2022), "Modified nonlocal couple stress isogeometric approach for bending and free vibration analysis of functionally graded nanoplates", Eng. Comput., 39(1), 993-1018. https://doi.org/10.1007/s00366-022-01726-2.
  35. Phuong, N.T., Dong, D.T., Van Doan, C. and Nam, V.H. (2022), "Nonlinear buckling of higher-order shear deformable stiffened FG-GRC laminated plates with nonlinear elastic foundation subjected to combined loads", Aerosp. Sci. Technol., 127, 107736. https://doi.org/10.1016/j.ast.2022.107736.
  36. Salehi, M., Gholami, R. and Ansari, R. (2022), "Nonlinear resonance of functionally graded porous circular cylindrical shells reinforced by graphene platelet with initial imperfections using higher-order shear deformation theory", Int. J. Struct. Stab. Dyn., 22(6), 2250075. https://doi.org/10.1142/S0219455422500754.
  37. Shahgholian-Ghahfarokhi, D., Safarpour, M. and Rahimi, A. (2021), "Torsional buckling analyses of functionally graded porous nanocomposite cylindrical shells reinforced with graphene platelets (GPLs)", Mech. Based Des. Struct., 49(1), 81-102. https://doi.org/10.1080/15397734.2019.1666723.
  38. Sobhy, M., Zenkour, A.M. and Abazid, M.A. (2022), "Hygrothermal wave dispersion analysis of metal foam microplates strengthened by graphene embedded in a viscoelastic medium under 2D magnetic field effect", Mech. Adv. Mater. Struct., 29(28), 7592-7604. https://doi.org/10.1080/15376494.2021.2003488.
  39. Shanab, R., Mohamed, S., Tharwan, M.Y., Assie, A.E. and Eltaher, M.A. (2022), "Buckling of 2D FG Porous unified shear plates resting on elastic foundation based on neutral axis", Steel Compos. Struct., 45(5), 729-747. https://doi.org/10.12989/scs.2022.45.5.729.
  40. She, G.L. and Ding, H.X. (2023), "Nonlinear primary resonance analysis of initially stressed graphene platelet reinforced metal foams doubly curved shells with geometric imperfection", Acta Mech. Sin., 39, 522392. https://doi.org/10.1007/s10409-022-22392-x.
  41. Song, J.P. and She, G.L. (2024), "Nonlinear resonance and chaotic dynamic of rotating graphene platelets reinforced metal foams plates in thermal environment", Arch. Civil Mech. Eng., 24, 45. https://doi.org/10.1007/s43452-023-00846-w.
  42. Song, J.P., She, G.L. and He, Y. J. (2024a), "Nonlinear forced vibration of axially moving functionally graded cylindrical shells under hygro-thermal loads", Geomech. Eng., 36(2), 99-109. https://doi.org/10.12989/gae.2024.36.2.099.
  43. Song, J.P., She, G.L. and He, Y. J. (2024b), "Nonlinear primary resonance of functionally graded doubly curved shells under different boundary conditions", Steel Compos. Struct., 50(2), 149-158. https://doi.org/10.12989/scs.2024.50.2.149.
  44. Shen, H.S. (2007), "Thermal postbuckling behavior of shear deformable FGM plates", Int. J. Mech. Sci., 49(4), 466-478.https://doi.org/10.1016/j.ijmecsci.2006.09.011.
  45. Wang, Y. and Wu, D. (2017), "Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory", Aerosp. Sci. Technol., 66, 83-91. https://doi.org/10.1016/j.ast.2017.03.003.
  46. Wang, Y.Q., Ye, C. and Zu, J.W. (2019), "Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets", Aerosp. Sci. Technol., 85, 359-370. https://doi.org/10.1016/j.ast.2018.12.022.
  47. Wang, J.N., Zhang, Y.L., Liu, Y., Zheng, W.H., Lee, L.P. and Sun, H.B. (2015), "Recent developments in superhydrophobic graphene and graphene-related materials: From preparation to potential applications", Nanoscale, 7(16), 7101-7114. https://doi.org/10.1039/c5nr00719d.
  48. Xiao, H., Zhou, T., Lv, J.B., He, X., Chen, M.H., Zeng, K., Hu, J.H. and Yang, G. (2022), "A high-mechanical-strength carbon/graphene porous composite with improved EMI shielding derived from high nitrogen-containing bio-based adenine-containing phthalonitrile resin", J. Electron. Mater., 51(9), 5120-5133. https://doi.org/10.1007/s11664-022-09720-6.
  49. Xu, H., Wang, Y.Q. and Zhang, Y.F. (2021), "Free vibration of functionally graded graphene platelet-reinforced porous beams with spinning movement via differential transformation method", Arch. Appl. Mech., 91(12), 4817-4834. https://doi.org/10.1007/s00419-021-02036-7.
  50. Xu, C., Li, Y. and Dai, Z.D. (2023), "Investigation on buckling of Timoshenko nanobeams resting on Winkler-Pasternak foundations in a non-uniform thermal environment via stress-driven nonlocal elasticity and nonlocal heat conduction", J. Therm. Stress., 46(4), 317-332. https://doi.org/10.1080/01495739.2023.2173687.
  51. Zhang, F.M., Li, P., Dai, G. and He, S.Y. (2016), "Fabrication and properties of three-dimensional nanoporous graphene foams with magnesium binder", Scripta. Mater., 111, 89-93. https://doi.org/10.1016/j.scriptamat.2015.08.021.
  52. Zhang, Y.W. and She, G.L. (2023), "Nonlinear low-velocity impact response of graphene platelet-reinforced metal foam cylindrical shells under axial motion with geometrical imperfection", Nonlinear Dyn., 111(7), 6317-6334. https://doi.org/10.1007/s11071-022-08186-9.
  53. Zhang, Y.W. and She, G.L. (2024a), "Combined resonance of graphene platelets reinforced metal foams cylindrical shells with spinning motion under nonlinear forced vibration", Eng. Struct., 300, 117177. https://doi.org/10.1016/j.engstruct.2023.117177.
  54. Zhang, Y.W. and She, G.L. (2024b), "Nonlinear combined resonance of axially moving conical shells under interaction between transverse and parametric modes", Commun. Nonlinear Sci. Numer. Simul., 131, 107849. https://doi.org/10.1016/j.cnsns.2024.107849.
  55. Zhang, Y.W., She, G.L. and Eltaher, M.A. (2023a), "Nonlinear transient response of graphene platelets reinforced metal foams annular plate considering rotating motion and initial geometric imperfection", Aerosp. Sci. Technol., 142, 108693. https://doi.org/10.1016/j.ast.2023.108693.
  56. Zhang, Y.W., She, G.L. and Ding, H.X. (2023b), "Nonlinear resonance of graphene platelets reinforced metal foams plates under axial motion with geometric imperfections", Eur. J. Mech. A-Solid., 98, 104887. https://doi.org/10.1016/j.euromechsol.2022.104887.
  57. Zhang, J., Lv, Y. and Li, L.H. (2022), "Dynamic instability of functionally graded graphene platelet-reinforced porous beams on an elastic foundation in a thermal environment", Nanomater., 12(22), 4098. https://doi.org/10.3390/nano12224098.
  58. Zamani, H.A., Nourazar, S.S. and Aghdam, M.M. (2022), "Large-amplitude vibration and buckling analysis of foam beams on nonlinear elastic foundations", Mech. Time-Depend. Mater., 2022, 1-18. https://doi.org/10.1007/s11043-022-09568-7.