DOI QR코드

DOI QR Code

Antibacterial activity of Chamaecyparis obtuse Extract and Profile of Antimicrobial Agents Resistance for Methicillin-Resistant Staphylococcus aureus

  • Jong Hwa Yum (Department of Clinical Laboratory Science, Dongeui University)
  • 투고 : 2024.01.11
  • 심사 : 2024.02.05
  • 발행 : 2024.03.31

초록

In vitro antimicrobial activities of hot water extracts of Chamaecyparis obtuse, for methicillin-resistant Staphylococcus aureus (MRSA) was compared to commonly used conventional antimicrobial agents. All MRSA was susceptible to linezolid or vancomycin, but also to erythromycin. MIC range and MIC90 to erythromycin, clindamycin, levofloxacin, tetracycline for MRSA were each 4 ㎍/mL, 2 ~ >128 ㎍/mL, ≤0.06 ~ >128 ㎍/mL, 0.25 ~ >128 ㎍/mL, 0.25~64 ㎍/mL and 4 ㎍/mL, .128 ㎍/mL, >128 ㎍/mL, >128 ㎍/mL, 64 ㎍/mL. The hot water extracts of leaf of C. obtuse had the lowest MIC range, MIC50, and MIC90 (0.125 µL/mL) for the MRSA tested, and it was possible more potent than various conventional antimicrobial agents. Screen antibacterial drug candidate with high antibacterial activity such as derivatives of C. obtuse leaf extract such as terpinen-4-ol or using combined therapy with commercialized antibacterial agents will likely be helpful in treating refractory MRSA infections.

키워드

과제정보

This work was supported by Dong-eui University foundation grant 2022, I thank professor Jeong-Hwan Shin of Inje University Busan Paik Hospital for his help in collecting strains.

참고문헌

  1. Andes D, Ogtrop ML, Peng J, Craig WA. In vivo pharmacodynamics of a new oxazolidinone (linezolid). Antimicrob Agents Chemother. 2002. 46: 3484-3489.
  2. Attassi K, Hershberger E, Alam R, Zervos MJ. Thrombocytopenia associated with linezolid therapy. Clin Infect Dis. 2002. 34: 695-698.
  3. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Tests; approved standards M2-M11, 28th ed. Wayne PA: CLSI; 2018.
  4. Hong EJ, Na KJ, Choi IG, Choi KC, Jeung EB. Antibacterial and antifungal effects of essential oils from coniferous trees. Biol Pham Bull. 2004. 27: 863-866.
  5. Jones RN, Ross JE, Bell JM, Utsuki U, Fumiaki I, Kobaysashi I, Trunidge JD. Zyvox annual appraisal of potency and spectrum program: linezolid surveillance program results for 2008. Diagn Microbiol Infect Dis. 2009. 65: 404-413.
  6. Kato H, Hagihara M, Asai N, Shibata Y, Koizumi Y, Yamagishi Y, Mikamo H. Meta-analysis of vancomycin versus linezolid in pneumonia with proven methicillin-resistant Staphylococcus aureus. J Glob Antimicrob Resist. 2021. 24: 98-105.
  7. Lee JH, Lee BK, Kim JH, Lee SH, Hong SK. Comparison of chemical compositions and antimicrobial activities of essential oils from three conifer trees; Pinus densiflora, Cryptomeria japonica, and Chamaecyparis obtuse. J Microiol Biotechnol. 2009. 19: 391-396.
  8. Lee JW, Yoon JH, Park JW. Effect of grapefruit seed extract fir abtubacteruak activity on the coated packaging. Food Eng Prog. 2015. 19: 104-110.
  9. Shinabarger D. Mechanism of action of the oxazolidinone antibacterial agents. Expert Opin Investig Drugs. 1999. 8: 1195-1202.
  10. Yang JK, Choi MS, Seo WT, Rinker DL, Han SW, Cheong GW. Chemical composition and antimicrobial activity of Chamaecyparis obtuse leaf essential oil. Fitoterapia. 2007. 78: 149-52.
  11. Yum JH, Choi SH, Yong D, Chong Y, Im WB, Rhee DK, Lee K. Comparative In vitro activities of torezolid (DA-7157) against clinical isolates of aerobic and anaerobic bacteria in South Korea. Antimicrob Agents Chemother. 2010. 54: 5381-5386.