DOI QR코드

DOI QR Code

Expansion ratio estimation of expandable foam grout using unit weight

  • WooJin Han (Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology) ;
  • Jong-Sub Lee (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Thomas H.-K. Kang (Department of Architecture and Architectural Engineering, Seoul National University) ;
  • Jongchan Kim (Civil Engineering, Department of Sustainable Engineering, Pukyong National University)
  • 투고 : 2023.11.25
  • 심사 : 2024.02.27
  • 발행 : 2024.04.25

초록

In urban areas, appropriate backfilling design is necessary to prevent surface subsidence and subsurface cavities after excavation. Expandable foam grout (EFG), a mixture of cement, water, and an admixture, can be used for cavity filling because of its high flowability and volume expansion. EFG volume expansion induces a porous structure that can be quantified by the entrapped air content. This study observed the unit weight variations in the EFG before and after expansion depending on the various admixture-cement and water-cement ratios. Subsequently, the air content before and after expansion and the gravimetric expansion ratios were estimated from the measured unit weights. The air content before expansion linearly increased with an increase in the admixture-cement ratio, resulting in a decrease in the unit weight. The air content after the expansion and the expansion ratio increased nonlinearly, and the curves stabilized at a relatively high admixture-cement ratio. In particular, a reduced water-cement ratio limits the air content generation and expansion ratio, primarily because of the short setting time, even at a high admixture-cement ratio. Based on the results, the relationship between the maximum expansion ratio of EFG and the mixture ingredients (water-cement and admixture-cement ratios) was introduced.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2021R1A5A1032433).

참고문헌

  1. ACI 229R (1999), Report on Controlled Low-Strength Materials, American Concrete Institute; Farmington Hills, MI, USA.
  2. ASTM D6023 (2016), Standard Test Method for Density (Unit Weight), Yield, Cement Content, and Air Content (Gravimetric) of Controlled Low-Strength Material (CLSM), ASTM International, West Conshohocken, PA, USA.
  3. Aubert, J.E., Husson, B. and Vaquier, A. (2004), "Metallic aluminum in MSWI fly ash: Quantification and influence on the properties of cement-based products", Waste Manage., 24(6), 589-596. https://doi.org/10.1016/j.wasman.2004.01.005.
  4. Ben aicha, M., Burtschell, Y., Alaoui, A.H., El Harrouni, K. and Jalbaud, O. (2017), "Correlation between bleeding and rheological characteristics of self-compacting concrete", J. Mater. Civil Eng., 29(6), 9. https://doi.org/10.1061/(asce)mt.1943-5533.0001871.
  5. Benedetto, A. and Pensa, S. (2007), "Indirect diagnosis of pavement structural damages using surface GPR reflection techniques", J. Appl. Geophys., 62(2), 107-123. https://doi.org/10.1016/j.jappgeo.2006.09.001.
  6. Boylu, F., Cinku, K., Esenli, F. and Celik, M.S. (2010), "The separation efficiency of Na-bentonite by hydrocyclone and characterization of hydrocyclone products", Int. J. Miner. Process., 94(3-4), 196-202. https://doi.org/10.1016/j.minpro.2009.12.004.
  7. Buczynski, P., Iwanski, M., Mazurek, G., Krasowski, J. and Krasowski, M. (2020), "Effects of Portland cement and polymer powder on the properties of cement-bound road base mixtures", Mater., 13(19), 27. https://doi.org/10.3390/ma13194253.
  8. Cui, W., Miao, R.C., Yan, W.S., Song, H.F. and Jiang, Z.A. (2022), "Static segregation of fresh high workable concrete based on an image processing method", Constr. Build. Mater., 361, 16. https://doi.org/10.1016/j.conbuildmat.2022.129708.
  9. Decky, M., Drusa, M., Zgutova, K., Blasko, M., Hajek, M. and Scherfel, W. (2016), Foam Concrete as New Material in Road Constructions, World Multidisciplinary Civil Engineering-Architecture-Urban Planning Symposium (WMCAUS), Prague, Czech Republic, June.
  10. Dinh, B.H., Nguyen, A.D., Jang, S.Y. and Kim, Y.S. (2021), "Evaluation of erosion characteristics of soils using the pinhole test", Int. J. Geo-Eng., 12, 16. https://doi.org/10.1186/s40703-021-00145-4.
  11. Do, T.M. and Kim, Y.S. (2016), "Engineering properties of controlled low strength material (CLSM) incorporating red mud", Int. J. Geo-Eng., 7, 7. https://doi.org/10.1186/s40703-016-0022-y.
  12. Evinemi, I.E., Adepelumi, A.A. and Adebayo, O. (2016), "Canal structure subsidence investigation using ground penetrating radar and geotechnical techniques", Int. J. Geo-Eng., 7, 9. https://doi.org/10.1186/s40703-016-0023-x.
  13. Guo, T.F., Qiao, M., Shu, X., Dong, L., Shan, G.C., Liu, X.D., Guo, Y.D. and Ran, Q.P. (2022), "Characteristic analysis of air bubbles on the rheological properties of cement mortar", Constr. Build. Mater., 316, 8. https://doi.org/10.1016/j.conbuildmat.2021.125812.
  14. Han, W.J., Lee, J.S. and Byun, Y.H. (2021a), "Volume, strength, and stiffness characteristics of expandable foam grout", Constr. Build. Mater., 274, 122013. https://doi.org/10.1016/j.conbuildmat.2020.122013.
  15. Han, W.J., Lee, J.S., Jeong, S.H., Lim, D.S. and Byun, Y.H. (2021b), "Evaluation of engineering properties of expandable foam grout with admixture content", Constr. Build. Mater., 293, 123488. https://doi.org/10.1016/j.conbuildmat.2021.123488.
  16. Han, W.J., Lee, J.S., Kang, S.H., Yun, T.S. and Byun, Y.H. (2023), "Permanent deformation characteristics of expandable foam grout under cyclic loading", Constr. Build. Mater., 398, 132458. https://doi.org/10.1016/j.conbuildmat.2023.132458.
  17. Han, W.J., Park, J.H., Cha, W.J., Lee, J.S. and Santamarina, J.C. (2022), "Pore topology, volume expansion and pressure development in chemically-induced foam cements", Sci. Rep., 12(1), 16690. https://doi.org/10.1038/s41598-022-21128-0.
  18. Hong, W.T., Kang, S., Lee, S.J. and Lee, J.S. (2018), "Analyses of GPR signals for characterization of ground conditions in urban areas", J. Appl. Geophys., 152, 65-76. https://doi.org/10.1016/j.jappgeo.2018.03.005.
  19. Hong, W.T. and Lee, J.S. (2018), "Estimation of ground cavity configurations using ground penetrating radar and time domain reflectometry", Nat. Hazards, 92(3), 1789-1807. https://doi.org/10.1007/s11069-018-3278-z.
  20. Huang, M.Y., Huang, C.F., Lin, J.D. and Ho, M.C. (2020), "Investigated on predictive compressive strength model and setting time of controlled low-strength materials", Int. J. Pavement Res. Technol., 13, 129-137. https://doi.org/10.1007/s42947-019-0093-1.
  21. Huang, Z.M., Zhang, T.S. and Wen, Z.Y. (2015), "Proportioning and characterization of Portland cement-based ultra-lightweight foam concretes", Constr. Build. Mater., 79, 390-396. https://doi.org/10.1016/j.conbuildmat.2015.01.051.
  22. Hwang, J., Kim, D., Li, X. and Min, D.J. (2019), "Polarity change extraction of GPR data for under-road cavity detection: Application on Sudeoksa testbed data", J. Environ. Eng. Geophys., 24(3), 419-431. https://doi.org/10.2113/jeeg24.3.419.
  23. Hwang, J.Y. and Song, X.M. (1997), "Replacing Al powder with Al slag or recycled foil in cellular concrete", JOM-J. Miner. Met. Mater. Soc., 49(8), 29-30. https://doi.org/10.1007/bf02914397.
  24. Kadela, M., Kukielka, A. and Malek, M. (2020), "Characteristics of lightweight concrete based on a synthetic polymer foaming agent", Mater., 13(21), 15. https://doi.org/10.3390/ma13214979.
  25. Kang, S.H., Yu, J.D., Han, W.J. and Lee, J.S. (2022), "Nondestructive detection of cavities beneath concrete plates using ground penetrating radar and microphone", NDT E Int., 130, 102663. https://doi.org/10.1016/j.ndteint.2022.102663.
  26. Khoeini, M., Bazgir, S., Tamizifar, M., Nemati, A. and Arzani, K. (2009), "Investigation of the modification process and morphology of organosilane modified nanoclay", Ceram. Silik., 53(4), 254-259.
  27. Kiani, B., Gandomi, A.H., Sajedi, S. and Liang, R.Y. (2016), "New formulation of compressive strength of preformed-foam cellular concrete: An evolutionary approach", J. Mater. Civil Eng., 28(10), 12. https://doi.org/10.1061/(asce)mt.1943-5533.0001602.
  28. Kumar, A. and Lingfa, P. (2019), "Sodium bentonite and kaolin clays: Comparative study on their FT-IR, XRF, and XRD", Mater. Today: Proc., 22, 737-742. https://doi.org/10.1016/j.matpr.2019.10.037.
  29. Kuzielova, E., Pach, L. and Palou, M. (2016), "Effect of activated foaming agent on the foam concrete properties", Constr. Build. Mater., 125, 998-1004. https://doi.org/10.1016/j.conbuildmat.2016.08.122.
  30. Lee, K.H., Cho, J.Y., Salgado, R. and Lee, I. (2001), "Retaining wall model test with waste foundry sand mixture backfill", Geotech. Test. J., 24(4), 401-408. https://doi.org/10.1520/GTJ11137J
  31. Lee, K.J., Kim, S.K. and Lee, K.H. (2014), "Flowable backfill materials from bottom ash for underground pipeline", Mater., 7(5), 3337-3352. https://doi.org/10.3390/ma7053337.
  32. Liu, C., Luo, J.L., Li, Q.Y., Gao, S., Jin, Z.Q., Li, S.C., Zhang, P. and Chen, S.C. (2019a), "Preparation and physical properties of high-belite sulphoaluminate cement-based foam concrete using an orthogonal test", Mater., 12(6), 17. https://doi.org/10.3390/ma12060984.
  33. Liu, X.X., Shen, S.L., Zhou, A. and Xu, Y.S. (2019b), "Evaluation of foam conditioning effect on groundwater inflow at tunnel cutting face", Int. J. Numer. Anal. Methods Geomech., 43(2), 463-481. https://doi.org/10.1002/nag.2871.
  34. Melo, J.P., Aguilar, A.S. and Olivares, F.H. (2014), "Rheological properties of aerated cement pastes with fly ash, metakaolin and sepiolite additions", Constr. Build. Mater., 65, 566-573. https://doi.org/10.1016/j.conbuildmat.2014.05.034.
  35. Moslemizadeh, A., Shadizadeh, S.R. and Moomenie, M. (2015), "Experimental investigation of the effect of henna extract on the swelling of sodium bentonite in aqueous solution", Appl. Clay Sci., 105, 78-88. https://doi.org/10.1016/j.clay.2014.12.025.
  36. Nambiar, E.K.K. and Ramamurthy, K. (2006), "Influence of filler type on the properties of foam concrete", Cement Concrete Compos., 28(5), 475-480. https://doi.org/10.1016/j.cemconcomp.2005.12.001.
  37. Nambiar, E.K.K. and Ramamurthy, K. (2008), "Fresh state characteristics of foam concrete", J. Mater. Civil Eng., 20(2), 111-117. https://doi.org/10.1061/(asce)0899-1561(2008)20:2(111).
  38. Park, J. and Hong, G. (2020), "Strength characteristics of controlled low-strength materials with waste paper sludge ash (WPSA) for prevention of sewage pipe damage", Mater., 13(19), 21. https://doi.org/10.3390/ma13194238.
  39. Shon, C.S., Lee, D., Kim, J.H. and Chung, C.W. (2018), "Freezing and thawing resistance of cellular concrete containing binary and ternary cementitious mixtures", Constr. Build. Mater., 168, 73-81. https://doi.org/10.1016/j.conbuildmat.2018.02.117.
  40. Thitimakorn, T., Kampananon, N., Jongjaiwanichkit, N. and Kupongsak, S. (2016), "Subsurface void detection under the road surface using ground penetrating radar (GPR), a case study in the Bangkok metropolitan area, Thailand", Int. J. Geo-Eng., 7, 1-9. https://doi.org/10.1186/s40703-016-0017-8.
  41. Wang, F.Z., Liu, Z.C. and Hu, S.G. (2010), "Early age volume change of cement asphalt mortar in the presence of aluminum powder", Mater. Struct., 43(4), 493-498. https://doi.org/10.1617/s11527-009-9505-z.
  42. Wei, J.Q. and Gencturk, B. (2019), "Hydration of ternary Portland cement blends containing metakaolin and sodium bentonite", Cement Concrete Res., 123, 16. https://doi.org/10.1016/j.cemconres.2019.05.017.
  43. Wong, L.S., Hashim, R. and Ali, F. (2013), "Utilization of sodium bentonite to maximize the filler and pozzolanic effects of stabilized peat", Eng. Geol., 152(1), 56-66. https://doi.org/10.1016/j.enggeo.2012.10.019.
  44. Zhang, C., Liu, H., Li, S.G., Liu, C., Qin, L., Chang, J. and Cheng, R.H. (2019), "Experimental study on the expansion of a new cement-based borehole sealing material using different additives and varied water-cement ratios", Arab. J. Sci. Eng., 44(10), 8717-8725. https://doi.org/10.1007/s13369-019-03837-3.
  45. Zhang, Z.H., Provis, J.L., Reid, A. and Wang, H. (2014), "Geopolymer foam concrete: An emerging material for sustainable construction", Constr. Build. Mater., 56, 113-127. https://doi.org/10.1016/j.conbuildmat.2014.01.081.
  46. Zhao, N., Wang, S.L., Wang, C.X., Quan, X.Y., Yan, Q.Q. and Li, B.B. (2020), "Study on the durability of engineered cementitious composites (ECCs) containing high-volume fly ash and bentonite against the combined attack of sulfate and freezing-thawing (F-T)", Constr. Build. Mater., 233, 14. https://doi.org/10.1016/j.conbuildmat.2019.117313.
  47. Zou, Q.L., Lin, B.Q., Zheng, C.S., Hao, Z.Y., Zhai, C., Liu, T., Liang, J.Y., Yan, F.Z., Yang, W. and Zhu, C.J. (2015), "Novel integrated techniques of drilling-slotting-separation-sealing for enhanced coal bed methane recovery in underground coal mines", J. Nat. Gas Sci. Eng., 26, 960-973. https://doi.org/10.1016/j.jngse.2015.07.033.