Acknowledgement
This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. NRF-2021R1A5A1032433), and Korea Environment Industry & Technology Institute(KEITI) through R&D Program for Innovative Flood Protection Technologies against Climate Crisis, funded by Korea Ministry of Environment (MOE) (RS2023-00218873).
References
- Al-mamari, M.M., Kantoush, S.A., Kobayashi, S., Sumi, T. and Saber, M. (2019), "Real-time measurement of flash-flood in a wadi area by LSPIV and STIV", Hydrol., 6(1), 27. https://doi.org/10.3390/hydrology6010027.
- Ansari, S., Rennie, C.D., Jamieson, E.C., Seidou, O. and Clark, S.P. (2023), "RivQNet: Deep learning based river discharge estimation using close-range water surface imagery", Water Resour. Res., 59(2), e2021WR031841. https://doi.org/10.1029/2021WR031841.
- Arshad, B., Ogie, R., Barthelemy, J., Pradhan, B., Verstaevel, N. and Perez, P. (2019), "Computer vision and IoT-based sensors in flood monitoring and mapping: A systematic review", Sensors, 19(22), 5012. https://doi.org/10.3390/s19225012.
- Badrinarayanan, V., Kendall, A. and Cipolla, R. (2017), "Segnet: A deep convolutional encoder-decoder architecture for image segmentation", IEEE Trans. Pattern Anal. Mach. Intell., 39(12), 2481-2495. https://doi.org/10.1109/TPAMI.2016.2644615.
- Bakhtiari, V., Piadeh, F., Behzadian, K. and Kapelan, Z. (2023), "A critical review for the application of cutting-edge digital visualisation technologies for effective urban flood risk management", Sustain. Cities Soc., 99, 104958. https://doi.org/10.1016/j.scs.2023.104958.
- Bharti, P., Chandra, P., Papka, M. and Koop, D. (2022), "An edge map based ensemble solution to detect water level in stream", arXiv preprint arXiv:2201.06098. https://doi.org/10.48550/arXiv.2201.06098.
- Blanch, X., Wagner, F. and Eltner, A. (2022), RIWA Dataset; Kaggle, San Francisco, CA, USA. https://www.kaggle.com/datasets/franzwagner/river-watersegmentation-dataset/versions/1
- Blender Community (2020), Blender - A 3D Modelling and Rendering Package; Blender, Amsterdam, Netherlands. www.blender.org
- Bodart, G., Le Coz, J., Jodeau, M. and Hauet, A. (2022), "Synthetic river flow videos for evaluating image-based velocimetry methods", Water Resour. Res., 58(12), e2022WR032251. https://doi.org/10.1029/2022WR032251.
- Brookner, E. (1998), Tracking and Kalman Filtering Made Easy, John Wiley & Sons, Inc., Hoboken, NJ, USA.
- Canny, J. (1986), "A computational approach to edge detection", IEEE Trans. Pattern Anal. Mach. Intell., PAMI-8(6), 679-698. https://doi.org/10.1109/TPAMI.1986.4767851.
- Cao, Y., Wu, Y., Yao, Q., Yu, J., Hou, D., Wu, Z. and Wang, Z. (2022), "River surface velocity estimation using optical flow velocimetry improved with attention mechanism and position encoding", IEEE Sens. J., 22(16), 16533-16544. https://doi.org/10.1109/JSEN.2022.3186972.
- Chaudhary, P., D'Aronco, S., Leitao, J.P., Schindler, K. and Wegner, J.D. (2020), "Water level prediction from social media images with a multi-task ranking approach", ISPRS J. Photogramm. Remote Sens., 167, 252-262. https://doi.org/10.1016/j.isprsjprs.2020.07.003.
- Chen, C., Fu, R., Ai, X., Huang, C., Cong, L., Li, X., Jiang, J. and Pei, Q. (2022), "An integrated method for river water level recognition from surveillance images using convolution neural networks", Remote Sens., 14(23), 6023. https://doi.org/10.3390/rs14236023.
- Detert, M. (2020), "How to avoid and correct biased riverine surface image velocimetry", Water Resour. Res., 57(2), e2020WR027833. https://doi.org/10.1029/2020WR027833.
- Dou, G., Chen, R., Han, C., Liu, Z. and Liu, J. (2022), "Research on water-level recognition method based on image processing and convolutional neural networks", Water, 14(12), 1890. https://doi.org/10.3390/w14121890.
- Eltner, A., Elias, M., Sardemann, H. and Spieler, D. (2018), "Automatic image-based water stage measurement for long-term observations in ungauged catchments", Water Resour. Res., 54(12), 10362-10371. https://doi.org/10.1029/2018WR023913.
- Eltner, A., Bressan, P.O., Akiyama, T., Goncalves, W.N. and Marcato Junior, J. (2021), "Using deep learning for automatic water stage measurements", Water Resour. Res., 57(3), e2020WR027608. https://doi.org/10.1029/2020WR027608.
- Etter, S., Strobl, B., van Meerveld, I. and Seibert, J. (2020a), "Quality and timing of crowd-based water level class observations", Hydrol. Process., 34(22), 4365-4378. https://doi.org/10.1002/hyp.13864.
- Etter, S., Strobl, B., Seibert, J. and van Meerveld, H.I. (2020), "Value of crowd-based water level class observations for hydrological model calibration", Water Resour. Res., 56(2), e2019WR026108. https://doi.org/10.1029/2019WR026108.
- Felzenszwalb, P.F., Girshick, R.B., McAllester, D. and Ramanan, D. (2009), "Object detection with discriminatively trained part-based models", IEEE Trans. Pattern Anal. Mach. Intell., 32(9), 1627-1645. https://doi.org/10.1109/TPAMI.2009.167.
- Feng, Y., Brenner, C. and Sester, M. (2020), "Flood severity mapping from volunteered geographic information by interpreting water level from images containing people: A case study of Hurricane Harvey", ISPRS J. Photogramm. Remote Sens., 169, 301-319. https://doi.org/10.1016/j.isprsjprs.2020.09.011.
- Fernandes Junior, F.E., Nonato, L.G., Ranieri, C.M. and Ueyama, J. (2021), "Memory-based pruning of deep neural networks for IoT devices applied to flood detection", Sensors, 21(22), 7506. https://doi.org/10.3390/s21227506.
- Fujita, I., Muste, M. and Kruger, A. (1998), "Large-scale particle image velocimetry for flow analysis in hydraulic engineering applications", J. Hydraul. Res., 36(3), 397-414. https://doi.org/10.1080/00221689809498626.
- Gilmore, T.E., Birgand, F. and Chapman, K.W. (2013), "Source and magnitude of error in an inexpensive image-based water level measurement system", J. Hydrol., 496, 178-186. https://doi.org/10.1016/j.jhydrol.2013.05.011.
- Girshick, R., Donahue, J., Darrell, T. and Malik, J. (2014), "Rich feature hierarchies for accurate object detection and semantic segmentation", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition., Columbus, OH, USA, June.
- Girshick, R. (2015), "Fast R-CNN", Proceedings of the IEEE International Conference on Computer Vision., Santiago, Chile, December.
- Hao, X., Lyu, H., Wang, Z., Fu, S. and Zhang, C. (2022), "Estimating the spatial-temporal distribution of urban street ponding levels from surveillance videos based on computer vision", Water Resour. Manag., 36(6), 1799-1812. https://doi.org/10.1007/s11269-022-03107-2.
- He, K., Zhang, X., Ren, S. and Sun, J. (2016), "Deep residual learning for image recognition", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition., Las Vegas, NV, USA, June.
- He, K., Gkioxari, G., Dollar, P. and Girshick, R. (2017), "Mask R-CNN", Proceedings of the IEEE International Conference on Computer Vision., Venice, Italy, October.
- Hiroi, K. and Kawaguchi, N. (2016), "FloodEye: Real-time flash flood prediction system for urban complex water flow", 2016 IEEE Sensors, Orlando, FL, USA, October-November.
- Horn, B.K. and Schunck, B.G. (1981), "Determining optical flow", Artif. Intell., 17(1-3), 185-203. https://doi.org/10.1016/0004-3702(81)90024-2.
- Hou, J., Li, X., Bai, G., Wang, X., Zhang, Z., Yang, L., Du, Y., Ma, Y. and Zhang, X. (2021), "A deep learning technique based flood propagation experiment", J. Flood Risk Manag., 14(3), e12718. https://doi.org/10.1111/jfr3.12718.
- Hou, J., Yang, L., Wang, X., Chai, J., Zhang, Z., Li, X., Shao, J., Du, Y. and Bai, G. (2022), "Adaptive large-scale particle image velocimetry method for physical model experiments of flood propagation with complex flow patterns", Measure., 198, 111309. https://doi.org/10.1016/j.measurement.2022.111309.
- Hsu, S.Y., Chen, T.B., Du, W.C., Wu, J.H. and Chen, S.C. (2019), "Integrate weather radar and monitoring devices for urban flooding surveillance", Sensors, 19(4), 825. https://doi.org/10.3390/s19040825.
- Huang, J., Kang, J., Wang, H., Wang, Z. and Qiu, T. (2020), "A novel approach to measuring urban waterlogging depth from images based on mask region-based convolutional neural network", Sustainab., 12(5), 2149. https://doi.org/10.3390/su12052149.
- Huang, H., Lei, X., Liao, W., Li, H., Wang, C. and Wang, H. (2023), "A real-time detecting method for continuous urban flood scenarios based on computer vision on block scale", Remote Sens., 15(6), 1696. https://doi.org/10.3390/rs15061696.
- Hutley, N.R., Beecroft, R., Wagenaar, D., Soutar, J., Edwards, B., Deering, N., Grinham, A. and Albert, S. (2023), "Adaptively monitoring streamflow using a stereo computer vision system", Hydrol. Earth System Sci., 27(10), 2051-2073. https://doi.org/10.5194/hess-27-2051-2023.
- Iqbal, U., Perez, P., Li, W. and Barthelemy, J. (2021), "How computer vision can facilitate flood management: A systematic review", Int. J. Disaster Risk Reduction, 53, 102030. https://doi.org/10.1016/j.ijdrr.2020.102030.
- Iqbal, U., Riaz, M.Z. B., Zhao, J., Barthelemy, J. and Perez, P. (2023), "Drones for flood monitoring, mapping and detection: A bibliometric review", Drones, 7(1), 32. https://doi.org/10.3390/drones7010032.
- Isidoro, J.M., Martins, R., Carvalho, R.F. and de Lima, J.L. (2021), "A high-frequency low-cost technique for measuring small-scale water level fluctuations using computer vision", Measure., 180, 109477. https://doi.org/10.1016/j.measurement.2021.109477.
- Jafari, N.H., Li, X., Chen, Q., Le, C.Y., Betzer, L.P. and Liang, Y. (2021), "Real-time water level monitoring using live cameras and computer vision techniques", Comput. Geosci., 147, 104642. https://doi.org/10.1016/j.cageo.2020.104642.
- Kamoji, S. and Kalla, M. (2023), "Effective flood prediction model based on twitter text and image analysis using BMLP and SDAE-HHNN", Eng. Appl. Artif. Intell., 123, 106365. https://doi.org/10.1016/j.engappai.2023.106365.
- Kantoush, S.A., Schleiss, A.J., Sumi, T. and Murasaki, M. (2011), "LSPIV implementation for environmental flow in various laboratory and field cases", J. Hydro-environ. Res., 5(4), 263-276. https://doi.org/10.1016/j.jher.2011.07.002.
- Kharazi, B.A. and Behzadan, A.H. (2021), "Flood depth mapping in street photos with image processing and deep neural networks", Comput. Environ. Urban Syst., 88, 101628. https://doi.org/10.1016/j.compenvurbsys.2021.101628.
- Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012), "Imagenet classification with deep convolutional neural networks", Adv. Neural Informat. Pr. Syst., 25, 1097-1105.
- Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2017), "ImageNet classification with deep convolutional neural networks", Commun. ACM, 60(6), 84-90. https://doi.org/10.1145/3065386.
- Le Coz, J., Renard, B., Vansuyt, V., Jodeau, M. and Hauet, A. (2021), "Estimating the uncertainty of video-based flow velocity and discharge measurements due to the conversion of field to image coordinates", Hydrol. Process., 35(5), e14169. https://doi.org/10.1002/hyp.14169.
- Leitao, J.P., Pena-Haro, S., Luthi, B., Scheidegger, A. and de Vitry, M.M. (2018), "Urban overland runoff velocity measurement with consumer-grade surveillance cameras and surface structure image velocimetry", J. Hydrol., 565, 791-804. https://doi.org/10.1016/j.jhydrol.2018.09.001.
- Li, D.X., Zhong, Q., Yu, M.Z. and Wang, X.K. (2013), "Large-scale particle tracking velocimetry with multi-channel CCD cameras", Int. J. Sediment Res., 28(1), 103-110. https://doi.org/10.1016/S1001-6279(13)60022-0.
- Li, W., Liao, Q. and Ran, Q. (2019), "Stereo-imaging LSPIV (SI-LSPIV) for 3D water surface reconstruction and discharge measurement in mountain river flows", J. Hydrol., 578, 124099. https://doi.org/10.1016/j.jhydrol.2019.124099.
- Li, J., Kong, X., Yang, Y., Yang, Z. and Hu, J. (2022), "Optical flow based measurement of flow field in wave-structure interaction", Ocean Eng., 263, 112336. https://doi.org/10.1016/j.oceaneng.2022.112336.
- Li, J., Cai, R., Tan, Y., Zhou, H., Sadick, A.M., Shou, W. and Wang, X. (2023), "Automatic detection of actual water depth of urban floods from social media images", Measure., 216, 112891. https://doi.org/10.1016/j.measurement.2023.112891.
- Liang, Y., Jafari, N., Luo, X., Chen, Q., Cao, Y. and Li, X. (2020), "WaterNet: An adaptive matching pipeline for segmenting water with volatile appearance", Comput. Visual Media, 6, 65-78. https://doi.org/10.1007/s41095-020-0156-x.
- Liang, Y., Li, X., Tsai, B., Chen, Q. and Jafari, N. (2023), "V-FloodNet: A video segmentation system for urban flood detection and quantification", Environ. Model. Softw., 160, 105586. https://doi.org/10.1016/j.envsoft.2022.105586.
- Lin, Y.T., Lin, Y.C. and Han, J.Y. (2018), "Automatic water-level detection using single-camera images with varied poses", Measure., 127, 167-174. https://doi.org/10.1016/j.measurement.2018.05.100.
- Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y. and Berg, A.C. (2016), "Ssd: Single shot multibox detector", Computer Vision-ECCV 2016: 14th European Conference, Amsterdam, Netherlands, October.
- Liu, W.C. and Huang, W.C. (2021), "Development of a three-axis accelerometer and large-scale particle image velocimetry (LSPIV) to enhance surface velocity measurements in rivers", Comput. Geosci., 155, 104866. https://doi.org/10.1016/j.cageo.2021.104866.
- Liu, W.C., Huang, W.C. and Young, C.C. (2022), "Uncertainty analysis for image-based streamflow measurement: The influence of ground control points", Water, 15(1), 123. https://doi.org/10.3390/w15010123.
- Liu, Y., Cheng, M. M., Hu, X., Wang, K., and Bai, X. (2017), "Richer convolutional features for edge detection", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition., Honolulu, HI, USA, July.
- Lo, S.W., Wu, J.H., Lin, F.P. and Hsu, C.H. (2015), "Cyber surveillance for flood disasters", Sensors, 15(2), 2369-2387. https://doi.org/10.3390/s150202369.
- Lo, S.W., Wu, J.H., Chang, J.Y., Tseng, C.H., Lin, M.W. and Lin, F.P. (2021), "Deep sensing of urban waterlogging", IEEE Access, 9, 127185-127203. https://doi.org/10.1109/ACCESS.2021.3111623.
- Long, J., Shelhamer, E. and Darrell, T. (2015), "Fully convolutional networks for semantic segmentation", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition., Boston, MA, USA, June.
- Lucas, B.D. and Kanade, T. (1981), "An iterative image registration technique with an application to stereo vision", IJCAI'81: 7th International Joint Conference on Artificial Intelligence, Vancouver, Canada, August.
- Moy de Vitry, M., Kramer, S., Wegner, J.D. and Leitao, J.P. (2019), "Scalable flood level trend monitoring with surveillance cameras using a deep convolutional neural network", Hydrol. Earth System Sci., 23(11), 4621-4634. https://doi.org/10.5194/hess-23-4621-2019.
- Muhadi, N.A., Abdullah, A.F., Bejo, S.K., Mahadi, M.R. and Mijic, A. (2020), "Image segmentation methods for flood monitoring system", Water, 12(6), 1825. https://doi.org/10.3390/w12061825.
- Munawar, H.S., Ullah, F., Qayyum, S., Khan, S.I. and Mojtahedi, M. (2021), "UAVs in disaster management: Application of integrated aerial imagery and convolutional neural network for flood detection", Sustainab., 13(14), 7547. https://doi.org/10.3390/su13147547.
- Muste, M., Hauet, A., Fujita, I., Legout, C. and Ho, H.C. (2014), "Capabilities of large-scale particle image velocimetry to characterize shallow free-surface flows", Adv. Water Res., 70, 160-171. https://doi.org/10.1016/j.advwatres.2014.04.004.
- Naves, J., Anta, J., Puertas, J., Regueiro-Picallo, M. and Suarez, J. (2019), "Using a 2D shallow water model to assess large-scale particle image velocimetry (LSPIV) and structure from motion (SfM) techniques in a street-scale urban drainage physical model", J. Hydrol., 575, 54-65. https://doi.org/10.1016/j.jhydrol.2019.05.003.
- Naves, J., Garcia, J.T., Puertas, J. and Anta, J. (2021), "Assessing different imaging velocimetry techniques to measure shallow runoff velocities during rain events using an urban drainage physical model", Hydrol. Earth Syst. Sci., 25(2), 885-900. https://doi.org/10.5194/hess-25-885-2021.
- Ning, H., Li, Z., Hodgson, M.E. and Wang, C. (2020), "Prototyping a social media flooding photo screening system based on deep learning", ISPRS Int. J. Geo-Informat., 9(2), 104. https://doi.org/10.3390/ijgi9020104.
- Pally, R.J. and Samadi, S. (2022), "Application of image processing and convolutional neural networks for flood image classification and semantic segmentation", Environ. Model. Softw., 148, 105285. https://doi.org/10.1016/j.envsoft.2021.105285.
- Pan, J., Yin, Y., Xiong, J., Luo, W., Gui, G. and Sari, H. (2018), "Deep learning-based unmanned surveillance systems for observing water levels", IEEE Access, 6, 73561-73571. https://doi.org/10.1109/ACCESS.2018.2883702.
- Park, S., Baek, F., Sohn, J. and Kim, H. (2021), "Computer vision-based estimation of flood depth in flooded-vehicle images", J. Comput. Civil Eng., 35(2), 04020072. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000956.
- Pereira, J., Monteiro, J., Silva, J., Estima, J. and Martins, B. (2020), "Assessing flood severity from crowdsourced social media photos with deep neural networks", Multimed. Tools Appl., 79, 26197-26223. https://doi.org/10.1007/s11042-020-09196-8.
- Perks, M.T., Russell, A.J. and Large, A.R. (2016), "Advances in flash flood monitoring using unmanned aerial vehicles (UAVs)", Hydrol. Earth System Sci., 20(10), 4005-4015. https://doi.org/10.5194/hess-20-4005-2016.
- Redmon, J., Divvala, S., Girshick, R. and Farhadi, A. (2016), "You only look once: Unified, real-time object detection", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition., Las Vegas, NV, USA, June.
- Redmon, J. and Farhadi, A. (2018), "YOLOv3: An incremental improvement", arXiv preprint arXiv:1804.02767. https://doi.org/10.48550/arXiv.1804.02767.
- Ren, S., He, K., Girshick, R. and Sun, J. (2016), "Faster R-CNN: Towards real-time object detection with region proposal networks", IEEE Transac. Pattern Anal. Mach. Intell., 39(6), 1137-1149. https://doi.org/10.1109/TPAMI.2016.2577031.
- Ronneberger, O., Fischer, P. and Brox, T. (2015), "U-Net: Convolutional networks for biomedical image segmentation", Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th International Conference., Munich, Germany, October.
- Sabbatini, L., Palma, L., Belli, A., Sini, F. and Pierleoni, P. (2021), "A computer vision system for staff gauge in river flood monitoring", Invent., 6(4), 79. https://doi.org/10.3390/inventions6040079.
- Seibert, J., Strobl, B., Etter, S., Hummer, P. and van Meerveld, H.J. (2019), "Virtual staff gauges for crowd-based stream level observations", Front. Earth Sci., 7, 70. https://doi.org/10.3389/feart.2019.00070.
- Simonyan, K. and Zisserman, A. (2014), "Very deep convolutional networks for large-scale image recognition", arXiv preprint arXiv:1409.1556. https://doi.org/10.48550/arXiv.1409.1556.
- Smith, M.W., Carrivick, J.L., Hooke, J. and Kirkby, M.J. (2014), "Reconstructing flash flood magnitudes using 'Structure-from-motion': A rapid assessment tool", J. Hydrol., 519, 1914-1927. https://doi.org/10.1016/j.jhydrol.2014.09.078.
- Sobel, I. and Feldman, G. (1968), "An isotropic 3×3 gradient operator for image processing", Mach. Vis. Three-Dimens. Scenes, 1968, 376-379.
- Strobl, B., Etter, S., van Meerveld, I. and Seibert, J. (2020), "Accuracy of crowdsourced streamflow and stream level class estimates", Hydrol. Sci. J., 65(5), 823-841. https://doi.org/10.1080/02626667.2019.1578966.
- Tauro, F., Piscopia, R. and Grimaldi, S. (2017), "Streamflow observations from cameras: Large-scale particle image velocimetry or particle tracking velocimetry?", Water Resour. Res., 53(12), 10374-10394. https://doi.org/10.1002/2017WR020848.
- Tauro, F., Tosi, F., Mattoccia, S., Toth, E., Piscopia, R. and Grimaldi, S. (2018), "Optical tracking velocimetry (OTV): Leveraging optical flow and trajectory-based filtering for surface streamflow observations", Remote Sens., 10(12), 2010. https://doi.org/10.3390/rs10122010.
- Teed, Z. and Deng, J. (2020), "Raft: Recurrent all-pairs field transforms for optical flow", Computer Vision-ECCV 2020: 16th European Conference., Glasgow, Scotland, August.
- Thuerey, N. and Pfaff, T. (2018), MantaFlow, http://mantaflow.com
- Tosi, F., Rocca, M., Aleotti, F., Poggi, M., Mattoccia, S., Tauro, F., Toth, E. and Grimaldi, S. (2020), "Enabling image-based streamflow monitoring at the edge", Remote Sens., 12(12), 2047. https://doi.org/10.3390/rs12122047.
- Tsubaki, R., Fujita, I. and Tsutsumi, S. (2011), "Measurement of the flood discharge of a small-sized river using an existing digital video recording system", J. Hydro-environ. Res., 5(4), 313-321. https://doi.org/10.1016/j.jher.2010.12.004.
- Vandaele, R., Dance, S.L. and Ojha, V. (2021), "Deep learning for automated river-level monitoring through river-camera images: An approach based on water segmentation and transfer learning", Hydrol. Earth System Sci., 25(8), 4435-4453. https://doi.org/10.5194/hess-25-4435-2021.
- Vanden Boomen, R.L., Yu, Z. and Liao, Q. (2021), "Application of deep learning for imaging-based stream gaging", Water Resour. Res., 57(11), e2021WR029980. https://doi.org/10.1029/2021WR029980.
- Vezhnevets, V. and Konouchine, V. (2005). "GrowCut: Interactive multi-label ND image segmentation by cellular automata", Proc. Graphicon, 1(4), 150-156.
- Wagner, F., Eltner, A. and Maas, H.G. (2023), "River water segmentation in surveillance camera images: A comparative study of offline and online augmentation using 32 CNNs", Int. J. Appl. Earth Observ. Geoinformat., 119, 103305. https://doi.org/10.1016/j.jag.2023.103305.
- Wang, R.Q., Mao, H., Wang, Y., Rae, C. and Shaw, W. (2018), "Hyper-resolution monitoring of urban flooding with social media and crowdsourcing data", Comput. Geosci., 111, 139-147. https://doi.org/10.1016/j.cageo.2017.11.008.
- Wang, R.Q. and Ding, Y. (2022), "Semi-supervised identification and mapping of surface water extent using street-level monitoring videos", Big Earth Data, 7(4), 986-1004. https://doi.org/10.1080/20964471.2022.2123352.
- Wang, Z., Seibert, J., van Meerveld, I., Lyu, H. and Zhang, C. (2023), "Automatic water-level class estimation from repeated crowd-based photos of streams", Hydrol. Sci. J., 68(13), 1826-1840. https://doi.org/10.1080/02626667.2023.2240312.
- Wu, H., Zhao, R., Gan, X. and Ma, X. (2019), "Measuring surface velocity of water flow by dense optical flow method", Water, 11(11), 2320. https://doi.org/10.3390/w11112320.
- Wu, Y., Zhang, J., Cao, Y., Wang, Z., Zhang, G. and Hou, D. (2023), "River surface velocimetry based on virtual river dataset and modulated-RAFT", IEEE Access., 11, 38275-38290. https://doi.org/10.1109/ACCESS.2023.3267635.
- Xie, S. and Tu, Z. (2015), "Holistically-nested edge detection", Proceedings of the IEEE International Conference on Computer Vision., Santiago, Chile, December.
- Yeh, M.T., Chung, Y.N., Huang, Y.X., Lai, C.W. and Juang, D.J. (2019), "Applying adaptive LS-PIV with dynamically adjusting detection region approach on the surface velocity measurement of river flow," Comput. Electr. Eng., 74, 466-482. https://doi.org/10.1016/j.compeleceng.2017.12.013.
- Zhang, Z., Zhou, Y., Liu, H., Zhang, L. and Wang, H. (2019), "Visual measurement of water level under complex illumination conditions", Sensors, 19(19), 4141. https://doi.org/10.3390/s19194141.
- Zhang, D. and Tong, J. (2023), "Robust water level measurement method based on computer vision", J. Hydrol., 620, 129456. https://doi.org/10.1016/j.jhydrol.2023.129456.
- Zhu, X. and Lipeme Kouyi, G. (2019), "An analysis of LSPIV-based surface velocity measurement techniques for stormwater detention basin management", Water Resour. Res., 55(2), 888-903. https://doi.org/10.1029/2018WR023813.
- Zou, Z., Chen, K., Shi, Z., Guo, Y. and Ye, J. (2023), "Object detection in 20 years: A survey", Proc. IEEE., 111(3), 257-276. https://doi.org/10.1109/JPROC.2023.3238524.