DOI QR코드

DOI QR Code

Nondestructive detection of crack density in ultra-high performance concrete using multiple ultrasound measurements: Evidence of microstructural change

  • Seungo Baek (Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Bada Lee (Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Jeong Hoon Rhee (Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Yejin Kim (School of Civil and Environmental Engineering, Yonsei University) ;
  • Hyoeun Kim (Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Seung Kwan Hong (School of Civil, Environmental, and Architectural Engineering, Korea University) ;
  • Goangseup Zi (School of Civil, Environmental, and Architectural Engineering, Korea University) ;
  • Gun Kim (Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Tae Sup Yun (School of Civil and Environmental Engineering, Yonsei University)
  • 투고 : 2023.12.06
  • 심사 : 2024.01.21
  • 발행 : 2024.04.25

초록

This study nondestructively examined the evolution of crack density in ultra-high performance concrete (UHPC) upon cyclic loading. Uniaxial compression was repeatedly applied to the cylindrical specimens at levels corresponding to 32% and 53% of the maximum load-bearing capacity, each at a steady strain rate. At each stage, both P-wave and S-wave velocities were measured in the absence of the applied load. In particular, the continuous monitoring of P-wave velocity from the first loading prior to the second loading allowed real-time observation of the strengthening effect during loading and the recovery effect afterwards. Increasing the number of cycles resulted in the reduction of both elastic wave velocities and Young's modulus, along with a slight rise in Poisson's ratio in both tested cases. The computed crack density showed a monotonically increasing trend with repeated loading, more significant at 53% than at 32% loading. Furthermore, the spatial distribution of the crack density along the height was achieved, validating the directional dependency of microcracking development. This study demonstrated the capability of the crack density to capture the evolution of microcracks in UHPC under cyclic loading condition, as an early-stage damage indicator.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2023-00213559, and No. NRF-2021R1A5A1032433).

참고문헌

  1. Alkaysi, M., El-Tawil, S., Liu, Z. and Hansen, W. (2016), "Effects of silica powder and cement type on durability of ultra high performance concrete (UHPC)", Cement Concrete Compos., 66, 47-56. https://doi.org/10.1016/j.cemconcomp.2015.11.005.
  2. Arora, A., Yao, Y., Mobasher, B. and Neithalath, N. (2019), "Fundamental insights into the compressive and flexural response of binder-and aggregate-optimized ultra-high performance concrete (UHPC)", Cement Concrete Compos., 98, 1-13. https://doi.org/10.1016/j.cemconcomp.2019.01.015.
  3. Bazant, Z.P., Hauggaard, A.B., Baweja, S. and Ulm, F.J. (1997), "Microprestress-solidification theory for concrete creep. I: Aging and drying effects", J. Eng. Mech., 123(11), 1188-1194. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:11(1188). 
  4. Budiansky, B. and O'connell, R.J. (1976), "Elastic moduli of a cracked solid", Int. J. Solid. Struct., 12(2), 81-97. https://doi.org/10.1016/0020-7683(76)90044-5.
  5. Byun, J.H., Lee, J.S., Park, K. and Yoon, H.K. (2015), "Prediction of crack density in porous-cracked rocks from elastic wave velocities", J. Appl. Geophys., 115, 110-119. https://doi.org/10.1016/j.jappgeo.2015.02.020.
  6. Carrasquillo, R.L., Slate, F.O. and Nilson, A.H. (1981), "Microcracking and behavior of high strength concrete subjected to short-term loading", ACI J., 78(3), 179-186. https://doi.org/10.14359/6915.
  7. Carrion, A., Genoves, V., Perez, G., Bittner, J., Popovics, J.S., Paya, J. and Gosalbez, J. (2021), "Effects of slow dynamics and conditioning on non-linear hysteretic material assessment using impact resonance acoustic spectroscopy", Mech. Syst. Signal Pr., 150, 107273. https://doi.org/10.1016/j.ymssp.2020.107273.
  8. Dils, J., Boel, V. and De Schutter, G. (2013), "Influence of cement type and mixing pressure on air content, rheology and mechanical properties of UHPC", Constr. Build. Mater., 41, 455-463. https://doi.org/10.1016/j.conbuildmat.2012.12.050.
  9. Fan, J., Jiang, D., Chen, J., Liu, W., Ngaha, W.T. and Chen, J. (2018), "Fatigue performance of ordinary concrete under discontinuous cyclic loading", Constr. Build. Mater., 166, 974-981. https://doi.org/10.1016/j.conbuildmat.2018.01.115.
  10. Feng, X.Q., Li, J.Y. and Yu, S.W. (2003), "A simple method for calculating interaction of numerous microcracks and its applications", Int. J. Solid. Struct., 40(2), 447-464. https://doi.org/10.1016/S0020-7683(02)00519-X.
  11. Graybeal, B. and Tanesi, J. (2007), "Durability of an ultrahigh-performance concrete", J. Mater. Civil Eng., 19(10), 848-854. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:10(848).
  12. Gueguen, Y. and Schubnel, A. (2003), "Elastic wave velocities and permeability of cracked rocks", Tectonophys., 370(1), 163-176. https://doi.org/https://doi.org/10.1016/S0040-1951(03)00184-7.
  13. Guyer, R.A. and Johnson, P.A. (1999), "Nonlinear mesoscopic elasticity: Evidence for a new class of materials", Phys. Today, 52(4), 30. https://doi.org/10.1063/1.882648.
  14. Johnson, P.A. and Jia, X. (2005), "Nonlinear dynamics, granular media and dynamic earthquake triggering", Nature, 437(7060), 871-874. https://doi.org/10.1038/nature04015.
  15. Ju, T., Achenbach, J.D., Jacobs, L.J. and Qu, J. (2019), "Nondestructive evaluation of thermal aging of adhesive joints by using a nonlinear wave mixing technique", NDT E Int., 103, 62-67. https://doi.org/10.1016/j.ndteint.2019.02.006.
  16. Kachanov, M. (1992), "Effective elastic properties of cracked solids: Critical review of some basic concepts", Appl. Mech. Rev., 45(8), 304-335. https://doi.org/10.1115/1.3119761.
  17. Kang, E.C., Xie, J. and Yan, J.B. (2023), "Static and cyclic compressive behaviours of ultra-high performance concrete in cold regions", Cold Reg. Sci. Technol., 213, 103937. https://doi.org/10.1016/j.coldregions.2023.103937.
  18. Kim, B.C., Chen, J. and Kim, J.Y. (2020), "Relation between crack density and acoustic nonlinearity in thermally damaged sandstone", Int. J. Rock Mech. Min. Sci., 125, 104171. https://doi.org/https://doi.org/10.1016/j.ijrmms.2019.104171.
  19. Kim, G., In, C.W., Kim, J.Y., Kurtis, K.E. and Jacobs, L.J. (2014), "Air-coupled detection of nonlinear Rayleigh surface waves in concrete-Application to microcracking detection", NDT E Int., 67(6), 64-70. https://doi.org/10.1016/j.ndteint.2014.07.004.
  20. Kim, G., Jang, J., Kim, K.Y. and Yun, T.S. (2020), "Characterization of orthotropic nature of cleavage planes in granitic rock", Eng. Geol., 265, 105432. https://doi.org/10.1016/j.enggeo.2019.105432.
  21. Kim, G., Kim, J.Y., Kurtis, K.E. and Jacobs, L.J. (2017), "Drying shrinkage in concrete assessed by nonlinear ultrasound", Cement Concrete Res., 92, 16-20. https://doi.org/10.1016/j.cemconres.2016.11.010.
  22. Kim, G. and Kurtis, K.E. (2022), "Early-stage assessment of drying shrinkage in Portland limestone cement concrete using nonlinear ultrasound", Constr. Build. Mater., 342, 128099. https://doi.org/10.1016/j.conbuildmat.2022.128099.
  23. Kim, G., Loreto, G., Kim, J.Y., Kurtis, K.E., Wall, J.J. and Jacobs, L.J. (2018), "In situ nonlinear ultrasonic technique for monitoring microcracking in concrete subjected to creep and cyclic loading", Ultrasonics, 88, 64-71. https://doi.org/10.1016/j.ultras.2018.03.006.
  24. Kim, J.Y., Bellotti, A., Alapati, P., Kurtis, K.E., Qu, J. and Jacobs, L.J. (2022), "Use of a non-collinear wave mixing technique to image internal microscale damage in concrete", J. Appl. Phys., 131(14), 145102. https://doi.org/10.1063/5.0086194.
  25. Lee, C., Park, S., Bolander, J.E. and Pyo, S. (2018), "Monitoring the hardening process of ultra high performance concrete using decomposed modes of guided waves", Constr. Build. Mater., 163, 267-276. https://doi.org/10.1016/j.conbuildmat.2017.12.042.
  26. Li, B., Wu, C., Wang, S., Li, Y., Wu, F., Xia, D. and Hu, J. (2023), "Monotonic and cyclic compressive behavior of ultra-high performance concrete with coarse aggregate: Experimental investigation and constitutive model", J. Build. Eng., 68, 106002. https://doi.org/10.1016/j.jobe.2023.106002.
  27. Lillamand, I., Chaix, J.F., Ploix, M.A. and Garnier, V. (2010), "Acoustoelastic effect in concrete material under uni-axial compressive loading", NDT E Int., 43(8), 655-660. https://doi.org/10.1016/j.ndteint.2010.07.001.
  28. McCoy, B.C., Leming, M.L. and Seracino, R. (2014), "Crack density and elastic properties of sustainable concretes", ACI Mater. J., 111(1), 13.
  29. Popovics, S., Rose, J.L. and Popovics, J.S. (1990), "The behaviour of ultrasonic pulses in concrete", Cement Concrete Res., 20(2), 259-270. https://doi.org/10.1016/0008-8846(90)90079-D.
  30. Pyo, S., Abate, S.Y. and Kim, H.K. (2018), "Abrasion resistance of ultra high performance concrete incorporating coarser aggregate", Constr. Build. Mater., 165, 11-16. https://doi.org/10.1016/j.conbuildmat.2018.01.036.
  31. Pyo, S., Alkaysi, M. and El-Tawil, S. (2016), "Crack propagation speed in ultra high performance concrete (UHPC)", Constr. Build. Mater., 114, 109-118. https://doi.org/10.1016/j.conbuildmat.2016.03.148.
  32. Shah, S.P. and Chandra, S. (1970), "Fracture of concrete subjected to cyclic and sustained loading", ACI Mater. J., 67(10), 816-827. https://doi.org/10.14359/7312.
  33. Shokouhi, P., Zoega, A. and Wiggenhauser, H. (2010), "Nondestructive investigation of stress-induced damage in concrete", Adv. Civil Eng., 2010, 1. https://doi.org/10.1155/2010/740189.
  34. Shokouhi, P., Riviere, J., Lake, C.R., Le Bas, P.Y. and Ulrich, T.J. (2017), "Dynamic acousto-elastic testing of concrete with a coda-wave probe: Comparison with standard linear and nonlinear ultrasonic techniques", Ultrasonics, 81, 59-65. https://doi.org/10.1016/j.ultras.2017.05.010.
  35. Sidney Mindess, J. and Francis Young, D.D. (2003), Concrete, 2nd Edition, Prentice Hall, Englewood Cliffs, NJ, USA.
  36. Song, Z., Fruhwirt, T. and Konietzky, H. (2018), "Characteristics of dissipated energy of concrete subjected to cyclic loading", Constr. Build. Mater., 168, 47-60. https://doi.org/10.1016/j.conbuildmat.2018.02.076.
  37. Song, Z., Fruhwirt, T. and Konietzky, H. (2020), "Inhomogeneous mechanical behaviour of concrete subjected to monotonic and cyclic loading", Int. J. Fatigue, 132, 105383. https://doi.org/10.1016/j.ijfatigue.2019.105383.
  38. Stanchits, S., Vinciguerra, S. and Dresen, G. (2006), "Ultrasonic velocities, acoustic emission characteristics and crack damage of basalt and granite", Pure Appl. Geophys., 163, 975-994. https://doi.org/10.1007/s00024-006-0059-5. 
  39. Sun, Y., Yu, R., Shui, Z., Wang, X., Qian, D., Rao, B., Huang, J. and He, Y. (2019), "Understanding the porous aggregates carrier effect on reducing autogenous shrinkage of ultra-high performance concrete (UHPC) based on response surface method", Constr. Build. Mater., 222, 130-141. https://doi.org/10.1016/j.conbuildmat.2019.06.151.
  40. Tan, Y., Yu, H., Ma, H., Zhang, Y. and Wu, C. (2017), "Study on the micro-crack evolution of concrete subjected to stress corrosion and magnesium sulfate", Constr. Build. Mater., 141, 453-460. https://doi.org/10.1016/j.conbuildmat.2017.02.127.
  41. Tang, Z., Li, W., Tam, V.W.Y. and Luo, Z. (2020), "Investigation on dynamic mechanical properties of fly ash/slag-based geopolymeric recycled aggregate concrete", Compos. Part B: Eng., 185, 107776. https://doi.org/10.1016/j.compositesb.2020.107776.
  42. Topcu, I.B. (1997), "Physical and mechanical properties of concretes produced with waste concrete", Cement Concrete Res., 27(12), 1817-1823. https://doi.org/10.1016/S0008-8846(97)00190-7.
  43. Wang, H.L., Dai, J.G., Sun, X.Y. and Zhang, X.L. (2016), "Characteristics of concrete cracks and their influence on chloride penetration", Constr. Build. Mater., 107, 216-225. https://doi.org/10.1016/j.conbuildmat.2016.01.002.
  44. Wang, S., Xu, L., Yin, C., Chen, Z. and Chi, Y. (2021), "Experimental investigation on the damage behavior of ultra-high performance concrete subjected to cyclic compression", Compos. Struct., 267, 113855. https://doi.org/10.1016/j.compstruct.2021.113855.
  45. Yang, L., Zeng, X.C. and Yu, H. (2015), "Study on crack density of concrete exposed to stress corrosion", Constr. Build. Mater., 82, 264-273. https://doi.org/10.1016/j.conbuildmat.2014.12.042.
  46. Zhang, X., Lu, Y., Wu, X., Wang, P., Li, R., Liu, Y., Shen, C., Zhang, H. and Zhang, D. (2023), "Constitutive model for ultra-high performance concrete (UHPC) considering the size effect under cyclic compressive loading", Constr. Build. Mater., 368, 130499. https://doi.org/10.1016/j.conbuildmat.2023.130499.
  47. Zhong, B., Zhu, J. and Morcous, G. (2021), "Measuring acoustoelastic coefficients for stress evaluation in concrete", Constr. Build. Mater., 309, 125127. https://doi.org/10.1016/j.conbuildmat.2021.125127.
  48. Zhou, C., Li, K. and Pang, X. (2012), "Geometry of crack network and its impact on transport properties of concrete", Cement Concrete Res., 42(9), 1261-1272. https://doi.org/10.1016/j.cemconres.2012.05.017.