References
- Ai, D., Jiang, G., Lam, S.K., He, P. and Li, C. (2023), "Computer vision framework for crack detection of civil infrastructure-A review", Eng. Appl. Artif. Intell., 117, 105478. https://doi.org/10.1016/j.engappai.2022.105478.
- Deng, J., Singh, A., Zhou, Y., Lu, Y. and Lee, V.C.S. (2022), "Review on computer vision-based crack detection and quantification methodologies for civil structures", Constr. Build. Mater., 356, 129238. https://doi.org/10.1016/j.conbuildmat.2022.129238.
- Dinh, T.H., Ha, Q.P. and La, H.M. (2016), "Computer vision-based method for concrete crack detection", 2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV), Phuket, Thailand, November.
- Dorafshan, S., Thomas, R.J. and Maguire, M. (2018), "Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete", Constr. Build. Mater., 186, 1031-1045. https://doi.org/10.1016/j.conbuildmat.2018.08.011.
- Dung, C.V. (2019), "Autonomous concrete crack detection using deep fully convolutional neural network", Automat. Constr., 99, 52-58. https://doi.org/10.1016/j.autcon.2018.11.028.
- Graybeal, B.A. (2008), "Flexural behavior of an ultrahigh-performance concrete I-girder", J. Bridge Eng., 13(6), 602-610. https://doi.org/10.1061/(ASCE)1084-0702(2008)13:6(602).
- Han, B., Zhang, L. and Ou, J. (2017), Smart and Multifunctional Concrete Toward Sustainable Infrastructures, Springer, Singapore.
- Jahne, B., Haussecker, H. and Geissler, P. (1999), Handbook of Computer Vision and Applications, Academic Press, San Diego, CA, USA.
- Koch, C., Georgieva, K., Kasireddy, V., Akinci, B. and Fieguth, P. (2015), "A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure", Adv. Eng. Inform., 29(2), 196-210. https://doi.org/10.1016/j.aei.2015.01.008.
- Kodur, V., Solhmirzaei, R., Agrawal, A., Aziz, E.M. and Soroushian, P. (2018), "Analysis of flexural and shear resistance of ultra high performance fiber reinforced concrete beams without stirrups", Eng. Struct., 174, 873-884. https://doi.org/10.1016/j.engstruct.2018.08.010.
- Krishna, S.T. and Kalluri, H.K. (2019), "Deep learning and transfer learning approaches for image classification", Int. J. Recent Technol. Eng. (IJRTE), 7(5S4), 427-432.
- Liu, Z., Cao, Y., Wang, Y. and Wang, W. (2019), "Computer vision-based concrete crack detection using U-net fully convolutional networks", Automat. Constr., 104, 129-139. https://doi.org/10.1016/j.autcon.2019.04.005.
- Prasanna, P., Dana, K.J., Gucunski, N., Basily, B.B., La, H.M., Lim, R.S. and Parvardeh, H. (2014), "Automated crack detection on concrete bridges", IEEE Trans. Automat. Sci. Eng., 13(2), 591-599. https://doi.org/10.1109/TASE.2014.2354314.
- Qassim, H., Verma, A. and Feinzimer, D. (2018), "Compressed residual-VGG16 CNN model for big data places image recognition", 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, February.
- Solhmirzaei, R. and Kodur, V. (2021), "A numerical model for tracing structural response of ultra-high performance concrete beams", Modell., 2(4), 448-466. https://doi.org/10.3390/modelling2040024.
- Solhmirzaei, R. and Kodur, V.K. (2018), "Structural behavior of ultra high performance concrete beams without stirrups", Transportation Research Board 97th Annual Meeting, Washington, D.C., USA, January.
- Solhmirzaei, R. and Kodur, V.K.R. (2017), "Modeling the response of ultra high performance fiber reinforced concrete beams", Procedia Eng., 210, 211-219. https://doi.org/10.1016/j.proeng.2017.11.068.
- Solhmirzaei, R., Salehi, H. and Kodur, V. (2022), "Predicting flexural capacity of ultrahigh-performance concrete beams: Machine learning-based approach", J. Struct. Eng., 148(5), 04022031. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003320.
- Solhmirzaei, R., Salehi, H., Kodur, V. and Naser, M.Z. (2020), "Machine learning framework for predicting failure mode and shear capacity of ultra high performance concrete beams", Eng. Struct., 224, 111221. https://doi.org/10.1016/j.engstruct.2020.111221.
- Szeliski, R. (2022), Computer Vision: Algorithms and Applications, Springer Nature, Berlin, Heidelberger, Germany.
- Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C. and Liu, C. (2018), "A survey on deep transfer learning", Artificial Neural Networks and Machine Learning-ICANN 2018: 27th International Conference on Artificial Neural Networks, Rhodes, Greece, October.
- Theckedath, D. and Sedamkar, R.R. (2020), "Detecting affect states using VGG16, ResNet50 and SE-ResNet50 networks", SN Comput. Sci., 1, 1-7. https://doi.org/10.1007/s42979-020-0114-9.
- Yang, I.H., Joh, C. and Kim, B.S. (2012), "Flexural response predictions for ultra-high-performance fibre-reinforced concrete beams", Mag. Concrete Res., 64(2), 113-127. https://doi.org/10.1680/macr.10.00115.
- Yoo, D.Y. and Yoon, Y.S. (2016), "A review on structural behavior, design, and application of ultra-high-performance fiber-reinforced concrete", Int. J. Concrete Struct. Mater., 10, 125-142. https://doi.org/10.1007/s40069-016-0143-x.
- Yoo, D.Y., Kang, S.T. and Yoon, Y.S. (2014), "Effect of fiber length and placement method on flexural behavior, tension-softening curve, and fiber distribution characteristics of UHPFRC", Constr. Build. Mater., 64, 67-81. https://doi.org/10.1016/j.conbuildmat.2014.04.007.
- Yoo, D.Y., Lee, J.H. and Yoon, Y.S. (2013), "Effect of fiber content on mechanical and fracture properties of ultra high performance fiber reinforced cementitious composites", Compos. Struct., 106, 742-753. https://doi.org/10.1016/j.compstruct.2013.07.033.