DOI QR코드

DOI QR Code

Comparison of Treatment Effect of Domestically Distributed Major Silage Inoculant

  • Young Sang Yu (Graduate School of International Agricultural Technology, SNU) ;
  • Yan Fen Li (Graduate School of International Agricultural Technology, SNU) ;
  • Xaysana Panyavong (Graduate School of International Agricultural Technology, SNU) ;
  • Li Zhunang Wu (Graduate School of International Agricultural Technology, SNU) ;
  • Jeong Ung Hwang (Graduate School of International Agricultural Technology, SNU) ;
  • Li Li Wang (Research Institute of Eco-Friendly Livestock Science, GreenBio Science and Technology, SNU) ;
  • Hak Jin Kim (Research Institute of Eco-Friendly Livestock Science, GreenBio Science and Technology, SNU) ;
  • Won Jin Lee (Research Institute of Eco-Friendly Livestock Science, GreenBio Science and Technology, SNU) ;
  • Jong Geun Kim (Graduate School of International Agricultural Technology, SNU)
  • Received : 2024.02.07
  • Accepted : 2024.03.18
  • Published : 2024.03.31

Abstract

Silage inoculants, crucial in modern silage production, comprise beneficial microorganisms, primarily lactic acid bacteria (LAB), strategically applied to forage material during ensiling. This study aimed to compare the effectiveness of various inoculants produced by different companies. Five treatments were evaluated, including a control group: T1 (Lactobacillus plantarum), T2 (Lactobacillus plantarum + Pediococcus pentosaceus), T3 (Lactobacillus plantarum + Pediococcus pentosaceus + Lactobacillus buchneri), T4 (Lactobacillus plantarum + Lactobacillus acidophilus + Lactobacillus bulgaricus), and T5 (Lactobacillus plantarum + Pediococcus pentosaceus + Enterococcus faecium). Italian ryegrass was harvested at the heading stage and treated with these silage inoculants. Samples were collected over a 60-day ensiling period. Co-inoculation with L. plantarum and P. pentosaceus (T2) resulted in significantly higher CP compared to the control group co-inoculation exhibited with resulted in Lactobacillus plantarum and Pediococcus pentosaceus in the T2 treatment exhibited higher CP content of 106.35 g/kg dry matter (DM). The T3 treatment, which included heterofermentative bacterial strains such as Lactobacillus buchneri, exhibited an increase in acetic acid concentration (11.15 g/kg DM). In the T4 treatment group, which utilized a mixed culture of Lactobacillus acidophilus and Lactobacillus bulgaricus, the NH3-N/TN content was observed to be the lowest (20.52 g/kg DM). The T5 containing Enterococcus faecium had the highest RFV (123) after 60 days. Expanding upon these findings, the study underscores not only the beneficial effects of particular inoculant treatments on silage quality but also underscores the potential of customized inoculation strategies in maximizing nutrient retention and overall silage preservation.

Keywords

Acknowledgement

This research was supported by Cooperative Research Program for Agriculture Science & Technology Development (Project No. RS-2021-RD010124), Rural Development Administration, Republic of Korea.

References

  1. Bai, J., Ding, Z., Ke, W., Xu, D., Wang, M., Huang, W., Zhang, Y., Liu, F. and Guo, X. 2021. Different lactic acid bacteria and their combinations regulated the fermentation process of ensiled alfalfa: ensiling characteristics, dynamics of bacterial community and their functional shifts. Microbial Biotechnology. 14(3):1171-1182.
  2. Bolsen, K., Ashbell, G. and Weinberg, Z. 1996. Silage fermentation and silage additives-Review. Asian-Australasian Journal of Animal Sciences. 9(5):483-493.
  3. Broderick, G. and Kang, J. 1980. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science. 63(1):64-75.
  4. Choi, G.J., Ji, H.C., Kim, K.Y., Park, H.S., Seo, S., Lee, K.W. and Lee, S.H. 2011. Growth characteristics and productivity of cold-tolerant "Kowinearly" Italian ryegrass in the northern part of South Korea. African Journal of Biotechnology. 10(14):2676-2682.
  5. Dumas, J. 1831. Procedes de l'analyse organique. Annals of Chimistry and of Physics. 47:198-205.
  6. Duniere, L., Sindou, J., Chaucheyras-Durand, F., Chevallier, I. and Thevenot-Sergentet, D. 2013. Silage processing and strategies to prevent persistence of undesirable microorganisms. Animal Feed Science and Technology. 182(1-4):1-15.
  7. Filya, I., Ashbell, G., Hen, Y. and Weinberg, Z. 2000. The effect of bacterial inoculants on the fermentation and aerobic stability of whole crop wheat silage. Animal Feed Science and Technology. 88(1-2):39-46.
  8. Ford, C., Morrison, I. and Wilson, J. 1979. Temperature effects on lignin, hemicellulose and cellulose in tropical and temperate grasses. Australian Journal of Agricultural Research. 30(4):621-633.
  9. Gonda, H., Nikodinoska, I., Le Cocq, K. and Moran, C.A. 2023. Efficacy of six lactic acid bacteria strains as silage inoculants in forages with different dry matter and water-soluble carbohydrate content. Grass and Forage Science. 78(4):636-647.
  10. Kung Jr, L., Shaver, R., Grant, R. and Schmidt, R. 2018. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science. 101(5):4020-4033.
  11. Kung Jr, L., Stokes, M.R. and Lin, C. 2003. Silage additives. Silage Science and Technology. 42:305-360.
  12. Kung, L. 2018. Silage fermentation and additives. Latin American Archives of Animal Production. 26(3-4).
  13. Kung, L. and Shaver, R. 2001. Interpretation and use of silage fermentation analysis reports. Focus on Forage. 3(13):1-5.
  14. Li, Y., Da Silva, E., Li, J. and Kung Jr, L. 2022. Effect of homo-fermentative lactic acid bacteria inoculants on fermentation characteristics and bacterial and fungal communities in alfalfa silage. Fermentation. 8(11):621.
  15. Li, Y. and Nishino, N. 2011. Monitoring the bacterial community of maize silage stored in a bunker silo inoculated with Enterococcus faecium, Lactobacillus plantarum and Lactobacillus buchneri. Journal of Applied Microbiology. 110(6):1561-1570.
  16. Lobo, C.B., Tomas, M.S.J., Viruel, E., Ferrero, M.A. and Lucca, M.E. 2019. Development of low-cost formulations of plant growth-promoting bacteria to be used as inoculants in beneficial agricultural technologies. Microbiological Research. 219:12-25.
  17. Makoni, N., Broderick, G. and Muck, R. 1997. Effect of modified atmospheres on proteolysis and fermentation of ensiled alfalfa. Journal of Dairy Science. 80(5):912-920.
  18. McDonald, P., Henderson, A. and Heron, S.J.E. 1991. The biochemistry of silage. Chalcombe publications.
  19. Merchen, N.R. and Bourquin, L.D. 1994. Processes of digestion and factors influencing digestion of forage-based diets by ruminants. Forage Quality, Evaluation, and Utilization. pp.564-612.
  20. Muck, R., Nadeau, E., McAllister, T., Contreras-Govea, F., Santos, M. and Kung Jr, L. 2018. Silage review: Recent advances and future uses of silage additives. Journal of Dairy Science. 101(5):3980-4000.
  21. Neis, E.P., Dejong, C.H. and Rensen, S.S. 2015. The role of microbial amino acid metabolism in host metabolism. Nutrients. 7(4):2930-2946.
  22. Nkosi, B., Meeske, R., Van der Merwe, H. and Groenewald, I. 2010. Effects of homofermentative and heterofermentative bacterial silage inoculants on potato hash silage fermentation and digestibility in rams. Animal Feed Science and Technology. 157(3-4):195-200.
  23. Ozogul, F. and Hamed, I. 2018. The importance of lactic acid bacteria for the prevention of bacterial growth and their biogenic amines formation: A review. Critical Reviews in Food Science and Nutrition. 58(10):1660-1670.
  24. Pahlow, G., Muck, R., Driehuis, F., Elferink, S., Spoelstra, S., Buxton, D. and Harrison, J. 2003. Silage science and technology. In: Buxton DR, Munk RE and Harrison JH (EdS). pp.31-94.
  25. Piwowarek, K., Lipinska, E., Hac-Szymanczuk, E., Kieliszek, M. and Scibisz, I. 2018. Propionibacterium spp.-source of propionic acid, vitamin B12, and other metabolites important for the industry. Applied Microbiology and Biotechnology. 102:515-538.
  26. Ran, Q., Guan, H., Li, H., He, W., Zhu, R., Zhang, L., Huang, Y., Xu, Y. and Fan, Y. 2022. Effect of formic acid and inoculants on microbial community and fermentation profile of wilted or un-wilted Italian ryegrass silages during ensiling and aerobic exposure. Fermentation. 8(12):755.
  27. Rohweder, D., Barnes, R. and Jorgensen, N. 1978. Proposed hay grading standards based on laboratory analyses for evaluating quality. Journal of Animal Science. 47(3):747-759.
  28. Shao, T., Zhang, L., Shimojo, M. and Masuda, Y. 2007. Fermentation quality of Italian ryegrass (Lolium multiflorum Lam.) silages treated with encapsulated-glucose, glucose, sorbic acid and pre-fermented juices. Asian-Australasian Journal of Animal Sciences. 20(11):1699-1704.
  29. Tilley, J.M.A. and Terry, D.R. 1963. A two-stage technique for the in vitro digestion of forage crops. Grass and Forage Science. 18(2):104-111.
  30. Van Soest, P.V., Robertson, J.B. and Lewis, B.A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science. 74(10):3583-3597.
  31. Weinberg, Z., Muck, R. and Weimer, P. 2003. The survival of silage inoculant lactic acid bacteria in rumen fluid. Journal of Applied Microbiology. 94(6):1066-1071.
  32. Yemm, E. and Willis, A. 1954. The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal. 57(3):508.
  33. Zhao, G.Q., Ju, Z.L., Chai, J.K., Jiao, T., Jia, Z.F., Casper, D.P., Zeng, L. and Wu, J.P. 2018. Effects of silage additives and varieties on fermentation quality, aerobic stability, and nutritive value of oat silage. Journal of Animal Science. 96(8):3151-3160.
  34. Zhao, J., Shao, T., Chen, S., Tao, X. and Li, J. 2021. Characterization and identification of cellulase-producing Enterococcus species isolated from Tibetan yak (Bos grunniens) rumen and their application in various forage silages. Journal of Applied Microbiology. 131(3):1102-1112.