DOI QR코드

DOI QR Code

Nasotracheal intubation in pediatrics: a narrative review

  • Jieun Kim (National Dental Care Center for Persons with Special Needs, Seoul National University Dental Hospital) ;
  • Sooyoung Jeon (National Dental Care Center for Persons with Special Needs, Seoul National University Dental Hospital)
  • 투고 : 2024.02.19
  • 심사 : 2024.03.10
  • 발행 : 2024.04.01

초록

Nasotracheal intubation (NTI) plays an important role in pediatric airway management, offering advantages in specific situations, such as oral and maxillofacial surgery and situations requiring stable tube positioning. However, compared to adults, NTI in children presents unique challenges owing to anatomical differences and limited space. This limited space, in combination with a large tongue and short mandible, along with large tonsils and adenoids, can complicate intubation. Owing to the short tracheal length in pediatric patients, it is crucial to place the tube at the correct depth to prevent it from being displaced due to neck movements, and causing injury to the glottis. The equipment used for NTI includes different tube types, direct laryngoscopy vs. video laryngoscopy, and fiberoptic bronchoscopy. Considering pediatric anatomy, the advantages of video laryngoscopy have been questioned. Studies comparing different techniques have provided insights into their efficacy. Determining the appropriate size and depth of nasotracheal tubes for pediatric patients remains a challenge. Various formulas based on age, weight, and height have been explored, including the recommendation of depth-mark-based NTI. This review provides a comprehensive overview of NTI in pediatric patients, including the relevant anatomy, equipment, clinical judgment, and possible complications.

키워드

참고문헌

  1. Dhakate VR, Singam AP, Bharadwaj HS. Evaluation of nasopharyngeal airway to facilitate nasotracheal intubation. Ann Maxillofac Surg 2020; 10: 57-60.
  2. Prasanna D, Bhat S. Nasotracheal intubation: an overview. J Maxillofac Oral Surg 2014; 13: 366-72.
  3. Hall CE, Shutt LE. Nasotracheal intubation for head and neck surgery. Anaesthesia 2003; 58: 249-56.
  4. Christian CE, Thompson NE, Wakeham MK. Use and outcomes of nasotracheal intubation among patients requiring mechanical ventilation across U.S. PICUs. Pediatr Crit Care Med 2020; 21: 620-4.
  5. Holzapfel L. Nasal vs oral intubation. Minerva Anestesiol 2003; 69: 348-52.
  6. Jagannathan N, Sequera-Ramos L, Sohn L, Huang A, Sawardekar A, Wasson N, et al. Randomized comparison of experts and trainees with nasal and oral fibreoptic intubation in children less than 2 yr of age. Br J Anaesth 2015; 114: 290-6.
  7. Black AE, Hatch DJ, Nauth-Misir N. Complications of nasotracheal intubation in neonates, infants and children: a review of 4 years' experience in a children's hospital. Br J Anaesth 1990; 65: 461-7.
  8. Samolinski BK, Grzanka A, Gotlib T. Changes in nasal cavity dimensions in children and adults by gender and age. Laryngoscope 2007; 117: 1429-33.
  9. Zalzal HG, O'Brien DC, Zalzal GH. Pediatric anatomy: nose and sinus. Oper Tech Otolayngol Head Neck Surg 2018; 29: 44-50.
  10. Buck DL, Brown CM. A longitudinal study of nose growth from ages 6 to 18. Ann Plast Surg 1987; 18: 310-3.
  11. Bernius M, Perlin D. Pediatric ear, nose, and throat emergencies. Pediatr Clin North Am 2006; 53: 195-214.
  12. Pallin DJ, Chng YM, McKay MP, Emond JA, Pelletier AJ, Camargo CA Jr. Epidemiology of epistaxis in us emergency departments, 1992 to 2001. Ann Emerg Med 2005; 46: 77-81.
  13. Harless J, Ramaiah R, Bhananker SM. Pediatric airway management. Int J Crit Illn Inj Sci 2014; 4: 65-70.
  14. Santillanes G, Gausche-Hill M. Pediatric airway management. Emerg Med Clin North Am 2008; 26: 961-75, ix.
  15. Eckenhoff JE. Some anatomic considerations of the infant larynx influencing endotracheal anesthesia. Anesthesiology 1951; 12: 401-10.
  16. Litman RS, Weissend EE, Shibata D, Westesson PL. Developmental changes of laryngeal dimensions in unparalyzed, sedated children. Anesthesiology 2003; 98: 41-5.
  17. Dalal PG, Murray D, Messner AH, Feng A, McAllister J, Molter D. Pediatric laryngeal dimensions: an age-based analysis. Anesth Analg 2009; 108: 1475-9.
  18. Wani TM, Bissonnette B, Rafiq Malik M, Hayes D Jr, Ramesh AS, Al Sohaibani M, et al. Age-based analysis of pediatric upper airway dimensions using computed tomography imaging. Pediatr Pulmonol 2016; 51: 267-71.
  19. Litman RS, Maxwell LG. Cuffed versus uncuffed endotracheal tubes in pediatric anesthesia: the debate should finally end. Anesthesiology 2013; 118: 500-1.
  20. Greene NH, Jooste EH, Thibault DP, Wallace AS, Wang A, Vener DF, et al. A study of practice behavior for endotracheal intubation site for children with congenital heart disease undergoing surgery: impact of endotracheal intubation site on perioperative outcomes-an analysis of the society of thoracic surgeons congenital cardiac anesthesia society database. Anesth Analg 2019; 129: 1061-8.
  21. Park DH, Lee CA, Jeong CY, Yang HS. Nasotracheal intubation for airway management during anesthesia. Anesth Pain Med (Seoul) 2021; 16: 232-47.
  22. Lee JH, Kim CH, Bahk JH, Park KS. The influence of endotracheal tube tip design on nasal trauma during nasotracheal intubation: magill-tip versus murphy-tip. Anesth Analg 2005; 101: 1226-9.
  23. Sanuki T, Hirokane M, Matsuda Y, Sugioka S, Kotani J. The parker flex-tip tube for nasotracheal intubation: the influence on nasal mucosal trauma. Anaesthesia 2010; 65: 8-11.
  24. Sugiyama K, Manabe Y, Kohjitani A. A styletted tracheal tube with a posterior-facing bevel reduces epistaxis during nasal intubation: a randomized trial. Can J Anaesth 2014; 61: 417-22.
  25. Ozkan ASM, Akbas S, Toy E, Durmus M. North polar tube reduces the risk of epistaxis during nasotracheal intubation: a prospective, randomized clinical trial. Curr Ther Res Clin Exp 2019; 90: 21-6.
  26. Mahajan R, Batra YK, Kumar S. Another use of magill forceps to assist nasotracheal intubation. Can J Anaesth 2007; 54: 957-8.
  27. Munshey FN, Gamble JJ, McKay WP. Modified pediatric magill forceps effect on nasal intubation time. Paediatr Anaesth 2016; 26: 221-2.
  28. Nakamura S, Watanabe T, Hiroi E, Sasaki T, Matsumoto N, Hori T. Cuff damage during naso-tracheal intubation for general anesthesia in oral surgery. Masui 1997; 46: 1508-14.
  29. Asai T. Are videolaryngoscopes useful for nasotracheal intubation? J Anesth 2014; 28: 647-9.
  30. Puchner W, Drabauer L, Kern K, Mayer C, Bierbaumer J, Rehak PH, et al. Indirect versus direct laryngoscopy for routine nasotracheal intubation. J Clin Anesth 2011; 23: 280-5.
  31. Ryoo SH, Park KN, Karm MH. The utilization of video laryngoscopy in nasotracheal intubation for oral and maxillofacial surgical procedures: a narrative review. J Dent Anesth Pain Med 2024; 24: 1-17.
  32. Hoshijima H, Mihara T, Kokubu S, Takeda S, Shiga T, Mizuta K. Effectiveness of indirect and direct laryngoscopes in pediatric patients: a systematic review and network meta-analysis. Children (Basel) 2022; 9: 1280.
  33. Yoo JY, Chae YJ, Lee YB, Kim S, Lee J, Kim DH. A comparison of the macintosh laryngoscope, mcgrath video laryngoscope, and pentax airway scope in paediatric nasotracheal intubation. Sci Rep 2018; 8: 17365.
  34. Patil VV, Subramanya BH, Kiranchand N, Bhaskar SB, Dammur S. Does c-macⓇ video laryngoscope improve the nasotracheal intubating conditions compared to macintosh direct laryngoscope in paediatric patients posted for tonsillectomy surgeries? Indian J Anaesth 2016; 60: 732-6.
  35. Goodine C, Sparrow K, Asselin M, Hung D, Hung O. The alignment approach to nasotracheal intubation. Can J Anesth 2016; 63: 991-2.
  36. Kaddoum RN, Ahmed Z, D'Augsutine AA, Zestos MM. Guidelines for elective pediatric fiberoptic intubation. J Vis Exp 2011; 47: 2364.
  37. Kinouchi K. Management of difficult pediatric airway. Masui 2006; 55: 24-32.
  38. Kumar N, Mishra N, Ahmad S. Fiberoptic nasotracheal intubation using flexible neonatal bronchoscope in a pediatric patient with post-burn hypertrophic scar over the face. Trends Anaesth Crit Care 2022; 45: 52-4.
  39. Oei J, Hari R, Butha T, Lui K. Facilitation of neonatal nasotracheal intubation with premedication: a randomized controlled trial. J Paediatr Child Health 2002; 38: 146-50.
  40. Kim JS, Park SY, Min SK, Kim JH, Lee SY, Moon BK. Awake nasotracheal intubation using fiberoptic bronchoscope in a pediatric patient with freeman-sheldon syndrome. Paediatr Anaesth 2005; 15: 790-2.
  41. Ozkan AS, Akbas S. Nasotracheal intubation in children for outpatient dental surgery: Is fiberoptic bronchoscopy useful? Niger J Clin Pract 2018; 21: 183-8.
  42. Kwon MA, Song J, Kim S, Ji SM, Bae J. Inspection of the nasopharynx prior to fiberoptic-guided nasotracheal intubation reduces the risk epistaxis. J Clin Anesth 2016; 32: 7-11.
  43. Lee JR. Updated review in pediatric airway management. Anesth Pain Med 2017; 12: 195-200.
  44. Eck JB, De Lisle Dear G, Phillips-Bute BG, Ginsberg B. Prediction of tracheal tube size in children using multiple variables. Paediatr Anaesth 2002; 12: 495-8.
  45. Shott SR. Down syndrome: analysis of airway size and a guide for appropriate intubation. Laryngoscope 2000; 110: 585-92.
  46. Takita K, Morimoto Y, Okamura A, Kemmotsu O. Do age-based formulae predict the appropriate endotracheal tube sizes in japanese children? J Anesth 2001; 15: 145-8.
  47. van den Berg AA, Mphanza T. Choice of tracheal tube size for children: finger size or age-related formula? Anaesthesia 1997; 52: 701-3.
  48. Tsukamoto M, Yamanaka H, Yokoyama T. Predicting the appropriate size of the uncuffed nasotracheal tube for pediatric patients: a retrospective study. Clin Oral Investig 2019; 23: 493-5.
  49. Chou CH, Tsai CL, Lin KL, Wu SC, Chiang MH, Huang HW, et al. A new formula to predict the size and insertion depth of cuffed nasotracheal tube in children receiving dental surgery: a retrospective study. Sci Rep 2023; 13: 12585.
  50. Sugiyama K, Yokoyama K. Displacement of the endotracheal tube caused by change of head position in pediatric anesthesia: evaluation by fiberoptic bronchoscopy. Anesth Analg 1996; 82: 251-3.
  51. Yamanaka H, Tsukamoto M, Hitosugi T, Yokoyama T. Changes in nasotracheal tube depth in response to head and neck movement in children. Acta Anaesthesiol Scand 2018; 62: 1383-8.
  52. Davenport HT. Paediatric anaesthesia. 3rd ed. London, Heinemann Medical Books. 1980.
  53. Yates AP, Harries AJ, Hatch DJ. Estimation of nasotracheal tube length in infants and children. Br J Anaesth 1987; 59: 524-6.
  54. Steward DJ, Lerman J. Manual of pediatric anesthesia. 5th ed. London, Churchill Livingstone. 2001.
  55. de la Sierra Antona M, Lopez-Herce J, Ruperez M, Garcia C, Garrido G. Estimation of the length of nasotracheal tube to be introduced in children. J Pediatr 2002; 140: 772-4.
  56. Kim KO, Um WS, Kim CS. Comparative evaluation of methods for ensuring the correct position of the tracheal tube in children undergoing open heart surgery. Anaesthesia 2003; 58: 889-93.
  57. Lau N, Playfor SD, Rashid A, Dhanarass M. New formulae for predicting tracheal tube length. Paediatr Anaesth 2006; 16: 1238-43.
  58. Kemper M, Dullenkopf A, Schmidt AR, Gerber A, Weiss M. Nasotracheal intubation depth in paediatric patients. Br J Anaesth 2014; 113: 840-6.
  59. Taghizadeh Imani A, Goudarzi M, Shababi N, Nooralishahi B, Mohseni A. Comparison of four formulas for nasotracheal tube length estimation in pediatric patients: an observational study. Braz J Anesthesiol 2023; 73: 584-8.
  60. Weiss M, Dullenkopf A, Fischer JE, Keller C, Gerber AC. Prospective randomized controlled multi-centre trial of cuffed or uncuffed endotracheal tubes in small children. Br J Anaesth 2009; 103: 867-73.
  61. O'Hanlon J, Harper KW. Epistaxis and nasotracheal intubation--prevention with vasoconstrictor spray. Ir J Med Sci 1994; 163: 58-60.
  62. Thrush DN. Cardiac arrest after oxymetazoline nasal spray. J Clin Anesth 1995; 7: 512-4.
  63. Kim EM, Chung MH, Lee MH, Choi EM, Jun IJ, Yun TH, et al. Is tube thermosoftening helpful for videolaryngoscope-guided nasotracheal intubation?: a randomized controlled trial. Anesth Analg 2019; 129: 812-8.
  64. Kim YC, Lee SH, Noh GJ, Cho SY, Yeom JH, Shin WJ, et al. Thermosoftening treatment of the nasotracheal tube before intubation can reduce epistaxis and nasal damage. Anesth Analg 2000; 91: 698-701.
  65. Watt S, Pickhardt D, Lerman J, Armstrong J, Creighton PR, Feldman L. Telescoping tracheal tubes into catheters minimizes epistaxis during nasotracheal intubation in children. Anesthesiology 2007; 106: 238-42.
  66. Tan YL, Wu ZH, Zhao BJ, Ni YH, Dong YC. For nasotracheal intubation, which nostril results in less epistaxis: right or left?: a systematic review and meta-analysis. Eur J Anaesthesiol 2021; 38: 1180-6.
  67. Earle R, Shanahan E, Vaghadia H, Sawka A, Tang R. Epistaxis during nasotracheal intubation: a randomized trial of the parker flex-tip™ nasal endotracheal tube with a posterior facing bevel versus a standard nasal rae endotracheal tube. Can J Anaesth 2017; 64: 370-5.
  68. Moore BM, Blumberg K, Laguna TA, Liu M, Zielinski EE, Kurachek SC. Incidental sinusitis in a pediatric intensive care unit. Pediatr Crit Care Med 2012; 13: e64-8.
  69. Willatts SM, Cochrane DF. Paranasal sinusitis: a complication of nasotracheal intubation: two case reports. Br J Anaesth 1985; 57: 1026-8.
  70. Michelson A, Kamp HD, Schuster B. Sinusitis in long-term intubated, intensive care patients: nasal versus oral intubation. Anaesthesist 1991; 40: 100-4.
  71. Bach A, Boehrer H, Schmidt H, Geiss HK. Nosocomial sinusitis in ventilated patients. Nasotracheal versus orotracheal intubation. Anaesthesia 1992; 47: 335-9.
  72. Zwillich C, Pierson DJ. Nasal necrosis: a common complication of nasotracheal intubation. Chest 1973; 64: 376-7.
  73. Huang TT, Tseng CE, Lee TM, Yeh JY, Lai YY. Preventing pressure sores of the nasal ala after nasotracheal tube intubation: from animal model to clinical application. J Oral Maxillofac Surg 2009; 67: 543-51.
  74. Yamamoto T, Flenner M, Schindler E. Complications associated with nasotracheal intubation and proposal of simple countermeasure. Anaesthesiol Intensive Ther 2019; 51: 72-3.
  75. Chait DH, Poulton TJ. Case report: retropharyngeal perforation, a complication of nasotracheal intubation. Nebr Med J 1984; 69: 68-9.
  76. Landess WW. Retropharyngeal dissection: a rare complication of nasotracheal intubation revisited--a case report. AANA J 1994; 62: 273-7.
  77. Oncag O, Cokmez B, Aydemir S, Balcioglu T. Investigation of bacteremia following nasotracheal intubation. Paediatr Anaesth 2005; 15: 194-8.
  78. Takahashi S, Minami K, Ogawa M, Miyamoto H, Ikemura K, Shigematsu A, et al. The preventive effects of mupirocin against nasotracheal intubation-related bacterial carriage. Anesth Analg 2003; 97: 222-5, table of contents.
  79. Talesh KT, Gargary RM, Arta SA, Yazdani J, Roshandel M, Ghanizadeh M, et al. Effect of 2% nasal mupirocin ointment on decreasing complications of nasotracheal intubation: a randomized controlled trial. J Clin Diagn Res 2017; 11: PC08-12.
  80. Lockhart PB, Brennan MT, Kent ML, Norton HJ, Weinrib DA. Impact of amoxicillin prophylaxis on the incidence, nature, and duration of bacteremia in children after intubation and dental procedures. Circulation 2004; 109: 2878-84.