Acknowledgement
This work was supported by the Rural Development Administration (RDA; grant number RS-2020-RD008879).
References
- Bae, J. Y., Wu, J., Lee, H. J., Jo, E. J., Murugaiyan, S., Chung, E. and Lee, S.-W. 2012. Biocontrol potential of a lytic bacteriophage PE204 against bacterial wilt of tomato. J. Microbiol. Biotechnol. 22:1613-1620. https://doi.org/10.4014/jmb.1208.08072
- Born, Y., Bosshard, L., Duffy, B., Loessner, M. J. and Fieseler, L. 2015. Protection of Erwinia amylovora bacteriophage Y2 from UV-induced damage by natural compounds. Bacteriophage 5:e1074330.
- Coyier, D. L. and Covey, R. P. 1975. Tolerance of Erwinia amylovora to streptomycin sulfate in Oregon and Washington. Plant Dis. Rep. 59:849-852.
- Denning, W. 1794. On the decay of apple trees. Trans. Soc. Promot. Agric. Arts Manuf. 1:219-222.
- Dion, M. B., Oechslin, F. and Moineau, S. 2020. Phage diversity, genomics and phylogeny. Nat. Rev. Microbiol. 18:125-138. https://doi.org/10.1038/s41579-019-0311-5
- Diston, D., Ebdon, J. E. and Taylor, H. D. 2012. The effect of UV-C radiation (254 nm) on candidate microbial source tracking phages infecting a human-specific strain of Bacteroides fragilis (GB-124). J. Water Health 10:262-270. https://doi.org/10.2166/wh.2012.173
- Diston, D., Ebdon, J. E. and Taylor, H. D. 2014. Inactivation of bacteriophage infecting Bacteroides strain GB124 using UV-B radiation. Photochem. Photobiol. 90:622-627. https://doi.org/10.1111/php.12223
- Flaherty, J. E., Harbaugh, B. K., Jones, J. B., Somodi, G. C. and Jackson, L. E. 2001. H-mutant bacteriophages as a potential biocontrol of bacterial blight of geranium. HortScience 36:98-100. https://doi.org/10.21273/HORTSCI.36.1.98
- Gill, J. and Abedon, S. T. 2003. Bacteriophage ecology and plants. APSnet Feature. Advanced online publication. https://doi.org/10.1094/APSnetFeature-2003-1103.
- Gill, J. J., Svircev, A. M., Smith, R. and Castle, A. J. 2003. Bacteriophages of Erwinia amylovora. Appl. Environ. Microbiol. 69:2133-2138. https://doi.org/10.1128/AEM.69.4.2133-2138.2003
- Hudson, J. A., Billington, C., Carey-Smith, G. and Greening, G. 2005. Bacteriophages as biocontrol agents in food. J. Food Prot. 68:426-437. https://doi.org/10.4315/0362-028X-68.2.426
- Kering, K. K., Kibii, B. J. and Wei, H. 2019. Biocontrol of phytobacteria with bacteriophage cocktails. Pest Manag. Sci. 75:1775-1781. https://doi.org/10.1002/ps.5324
- Lee, H. J., Lee, S. W., Suh, S.-J. and Hyun, I.-H. 2022. Recent spread and potenial pathways for fire blight in South Korea. Bull. OEPP 52:135-140. https://doi.org/10.1111/epp.12835
- Lin, L., Han, J., Ji, X., Hong, W., Huang, L. and Wei, Y. 2011. Isolation and characterization of a new bacteriophage MMP17 from Meiothermus. Extremophiles 15:253-258. https://doi.org/10.1007/s00792-010-0354-z
- Ly-Chatain, M. H. 2014. The factors affecting effectiveness of treatment in phages therapy. Front. Microbiol. 5:51.
- Miller, T. D. and Schroth, M. N. 1972. Monitoring epiphytic population of Erwinia amylovora on pear with a selective medium. Phytopathology 62:1175-1182. https://doi.org/10.1094/Phyto-62-1175
- OmniLytics. 2024. AgriPhage product-info. URL https://www.agriphage.com/product-info/ [12 January 2024].
- Park, D. H., Yu, J.-G., Oh, E.-J., Han, K.-S., Yea, M. C., Lee, S. J., Myung, I.-S., Shim, H. S. and Oh, C.-S. 2016. First report of fire blight disease on Asian pear caused by Erwinia amylovora in Korea. Plant Dis. 100:1946.
- Park, J., Kim, B. Song, S. Lee, Y. W. and Roh, E. 2022. Isolation of nine bacteriophages shown effective against Erwinia amylovora in Korea. Plant Pathol. J. 38:248-253. https://doi.org/10.5423/PPJ.NT.11.2021.0172
- Park, J., Lee, G. M., Kim, D., Park, D. H. and Oh, C.-S. 2018. Characterization of the lytic bacteriophage phiEaP-8 effective against both Erwinia amylovora and Erwinia pyrifoliae causing severe diseases in apple and pear. Plant Pathol. J. 34:445-450. https://doi.org/10.5423/PPJ.NT.06.2018.0100
- Rahimi-Midani, A., Lee, Y. S., Kang, S.-W., Kim, M.-K. and Choi, T.-J. 2018. First isolation and molecular characterization of bacteriophages infecting Acidovorax citrulli, the causal agent of bacterial fruit blotch. Plant Pathol. J. 34:59-64. https://doi.org/10.5423/PPJ.NT.08.2017.0190
- Sillankorva, S. M., Oliveira, H. and Azeredo, J. 2012. Bacteriophages and their role in food safety. Int. J. Microbiol. 2012:863945.
- Stefani, E., Obradovic, A., Gasic, K., Altin, I., Nagy, I. K. and Kovacs T. 2021. Bacteriopahge-mediated control of phytopathogenic Xanthomonads: a promising green solution for the future. Microorganisms 9:1056.
- Sundin, G. W. and Wang, N. 2018. Antibiotic resistance in plant-pathogenic bacteria. Annu. Rev. Phytopathol. 56:161-180. https://doi.org/10.1146/annurev-phyto-080417-045946
- Tancos, K. A., Villani, S., Kuehne, S., Borejsza-Wysocka, E., Breth, D., Carol, J., Aldwinckle, H. S. and Cox, K. D. 2016. Prevalence of streptomycin-resistant Erwinia amylovora in New York apple orchards. Plant Dis. 100:802-809. https://doi.org/10.1094/PDIS-09-15-0960-RE
- Tyrrell, R. M. 1979. Repair of near (365 nm)- and far (254 nm)-UV damage to bacteriophage of Escherichia coli. Photochem. Photobiol. 29:963-970. https://doi.org/10.1111/j.1751-1097.1979.tb07799.x
- Voelker, R. 2019. FDA approves bacteriophage trial. JAMA 321:638.
- Wagner, N., Matzen, S., Walte, H.-G., Neve, H., Franz, C. M. A. P., Heller, K. J. and Hammer, P. 2018. Extreme thermal stability of Lactococcus lactis bacteriophages: evaluation of phage inactivation in a pilot-plant pasteurizer. LWT-Food Sci. Technol. 92:412-415. https://doi.org/10.1016/j.lwt.2018.02.056