DOI QR코드

DOI QR Code

Bacteriophage Cocktail Comprising Fifi044 and Fifi318 for Biocontrol of Erwinia amylovora

  • Byeori Kim (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Seung Yeup Lee (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Jungkum Park (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Sujin Song (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kwang-Pyo Kim (Department of Food Science and Technology, Jeonbuk National University) ;
  • Eunjung Roh (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration)
  • Received : 2024.01.02
  • Accepted : 2024.02.29
  • Published : 2024.04.01

Abstract

Erwinia amylovora is a plant pathogen that causes fire blight on apples and pears. Bacteriophages, which are viruses that selectively infect specific species of bacteria and are harmless to animal cells, have been considered as biological control agents for the prevention of bacterial pathogens. In this study, we aimed to use bacteriophages that infect E. amylovora as biocontrol agents against fire blight. We isolated bacteriophages Fifi044 and Fifi318 infecting E. amylovora, and characterized their morphology, plaque form, and genetic diversity to use as cocktails for disease control. The stabilities of the two phages were investigated at various temperatures and pH values and under sunlight, and long-term storage experiment was conducted for a year. To evaluate whether the two phages were suitable for use in cocktail form, growth curves of E. amylovora were prepared after treating the bacterial cells with single phages and a phage cocktail. In addition, a disease control test was conducted using immature apples and in vitro cultured apple plantlets to determine the biocontrol effects of the phage cocktail. The two phages were morphologically and genetically different, and highly stable up to 50℃ and pH value from 4 to 10. The phages showed synergistic effect when used as a cocktail in the inhibition of host bacterial growth and the disease control. This study demonstrated that the potential of the phage cocktail as a biocontrol agent for commercial use.

Keywords

Acknowledgement

This work was supported by the Rural Development Administration (RDA; grant number RS-2020-RD008879).

References

  1. Bae, J. Y., Wu, J., Lee, H. J., Jo, E. J., Murugaiyan, S., Chung, E. and Lee, S.-W. 2012. Biocontrol potential of a lytic bacteriophage PE204 against bacterial wilt of tomato. J. Microbiol. Biotechnol. 22:1613-1620. https://doi.org/10.4014/jmb.1208.08072
  2. Born, Y., Bosshard, L., Duffy, B., Loessner, M. J. and Fieseler, L. 2015. Protection of Erwinia amylovora bacteriophage Y2 from UV-induced damage by natural compounds. Bacteriophage 5:e1074330.
  3. Coyier, D. L. and Covey, R. P. 1975. Tolerance of Erwinia amylovora to streptomycin sulfate in Oregon and Washington. Plant Dis. Rep. 59:849-852.
  4. Denning, W. 1794. On the decay of apple trees. Trans. Soc. Promot. Agric. Arts Manuf. 1:219-222.
  5. Dion, M. B., Oechslin, F. and Moineau, S. 2020. Phage diversity, genomics and phylogeny. Nat. Rev. Microbiol. 18:125-138. https://doi.org/10.1038/s41579-019-0311-5
  6. Diston, D., Ebdon, J. E. and Taylor, H. D. 2012. The effect of UV-C radiation (254 nm) on candidate microbial source tracking phages infecting a human-specific strain of Bacteroides fragilis (GB-124). J. Water Health 10:262-270. https://doi.org/10.2166/wh.2012.173
  7. Diston, D., Ebdon, J. E. and Taylor, H. D. 2014. Inactivation of bacteriophage infecting Bacteroides strain GB124 using UV-B radiation. Photochem. Photobiol. 90:622-627. https://doi.org/10.1111/php.12223
  8. Flaherty, J. E., Harbaugh, B. K., Jones, J. B., Somodi, G. C. and Jackson, L. E. 2001. H-mutant bacteriophages as a potential biocontrol of bacterial blight of geranium. HortScience 36:98-100. https://doi.org/10.21273/HORTSCI.36.1.98
  9. Gill, J. and Abedon, S. T. 2003. Bacteriophage ecology and plants. APSnet Feature. Advanced online publication. https://doi.org/10.1094/APSnetFeature-2003-1103.
  10. Gill, J. J., Svircev, A. M., Smith, R. and Castle, A. J. 2003. Bacteriophages of Erwinia amylovora. Appl. Environ. Microbiol. 69:2133-2138. https://doi.org/10.1128/AEM.69.4.2133-2138.2003
  11. Hudson, J. A., Billington, C., Carey-Smith, G. and Greening, G. 2005. Bacteriophages as biocontrol agents in food. J. Food Prot. 68:426-437. https://doi.org/10.4315/0362-028X-68.2.426
  12. Kering, K. K., Kibii, B. J. and Wei, H. 2019. Biocontrol of phytobacteria with bacteriophage cocktails. Pest Manag. Sci. 75:1775-1781. https://doi.org/10.1002/ps.5324
  13. Lee, H. J., Lee, S. W., Suh, S.-J. and Hyun, I.-H. 2022. Recent spread and potenial pathways for fire blight in South Korea. Bull. OEPP 52:135-140. https://doi.org/10.1111/epp.12835
  14. Lin, L., Han, J., Ji, X., Hong, W., Huang, L. and Wei, Y. 2011. Isolation and characterization of a new bacteriophage MMP17 from Meiothermus. Extremophiles 15:253-258. https://doi.org/10.1007/s00792-010-0354-z
  15. Ly-Chatain, M. H. 2014. The factors affecting effectiveness of treatment in phages therapy. Front. Microbiol. 5:51.
  16. Miller, T. D. and Schroth, M. N. 1972. Monitoring epiphytic population of Erwinia amylovora on pear with a selective medium. Phytopathology 62:1175-1182. https://doi.org/10.1094/Phyto-62-1175
  17. OmniLytics. 2024. AgriPhage product-info. URL https://www.agriphage.com/product-info/ [12 January 2024].
  18. Park, D. H., Yu, J.-G., Oh, E.-J., Han, K.-S., Yea, M. C., Lee, S. J., Myung, I.-S., Shim, H. S. and Oh, C.-S. 2016. First report of fire blight disease on Asian pear caused by Erwinia amylovora in Korea. Plant Dis. 100:1946.
  19. Park, J., Kim, B. Song, S. Lee, Y. W. and Roh, E. 2022. Isolation of nine bacteriophages shown effective against Erwinia amylovora in Korea. Plant Pathol. J. 38:248-253. https://doi.org/10.5423/PPJ.NT.11.2021.0172
  20. Park, J., Lee, G. M., Kim, D., Park, D. H. and Oh, C.-S. 2018. Characterization of the lytic bacteriophage phiEaP-8 effective against both Erwinia amylovora and Erwinia pyrifoliae causing severe diseases in apple and pear. Plant Pathol. J. 34:445-450. https://doi.org/10.5423/PPJ.NT.06.2018.0100
  21. Rahimi-Midani, A., Lee, Y. S., Kang, S.-W., Kim, M.-K. and Choi, T.-J. 2018. First isolation and molecular characterization of bacteriophages infecting Acidovorax citrulli, the causal agent of bacterial fruit blotch. Plant Pathol. J. 34:59-64. https://doi.org/10.5423/PPJ.NT.08.2017.0190
  22. Sillankorva, S. M., Oliveira, H. and Azeredo, J. 2012. Bacteriophages and their role in food safety. Int. J. Microbiol. 2012:863945.
  23. Stefani, E., Obradovic, A., Gasic, K., Altin, I., Nagy, I. K. and Kovacs T. 2021. Bacteriopahge-mediated control of phytopathogenic Xanthomonads: a promising green solution for the future. Microorganisms 9:1056.
  24. Sundin, G. W. and Wang, N. 2018. Antibiotic resistance in plant-pathogenic bacteria. Annu. Rev. Phytopathol. 56:161-180. https://doi.org/10.1146/annurev-phyto-080417-045946
  25. Tancos, K. A., Villani, S., Kuehne, S., Borejsza-Wysocka, E., Breth, D., Carol, J., Aldwinckle, H. S. and Cox, K. D. 2016. Prevalence of streptomycin-resistant Erwinia amylovora in New York apple orchards. Plant Dis. 100:802-809. https://doi.org/10.1094/PDIS-09-15-0960-RE
  26. Tyrrell, R. M. 1979. Repair of near (365 nm)- and far (254 nm)-UV damage to bacteriophage of Escherichia coli. Photochem. Photobiol. 29:963-970. https://doi.org/10.1111/j.1751-1097.1979.tb07799.x
  27. Voelker, R. 2019. FDA approves bacteriophage trial. JAMA 321:638.
  28. Wagner, N., Matzen, S., Walte, H.-G., Neve, H., Franz, C. M. A. P., Heller, K. J. and Hammer, P. 2018. Extreme thermal stability of Lactococcus lactis bacteriophages: evaluation of phage inactivation in a pilot-plant pasteurizer. LWT-Food Sci. Technol. 92:412-415. https://doi.org/10.1016/j.lwt.2018.02.056