과제정보
This work is funded by the National Research Foundation of Korea (NRF) grants (2023R1A2C1006587, 2022M3J6A1063595) and Korea University (K2302021).
참고문헌
- Akaho S (2001). A kernel method for canonical correlation analysis, Available from: arXiv preprint cs/0609071
- Artemiou A and Dong Y (2016). Sufficient dimension reduction via principal L q support vector machine, Electronic Journal of Statistics, 10, 783-805. https://doi.org/10.1214/16-EJS1122
- Artemiou A, Dong Y, and Shin SJ (2021). Real-time sufficient dimension reduction through principal least squares support vector machines, Pattern Recognition, 112, 107768.
- Banijamali E, Karimi A-H, and Ghodsi A (2018). Deep variational sufficient dimensionality reduction, Available from: arXiv preprint arXiv:1812.07641
- Bickel PJ and Levina E (2008). Regularized estimation of large covariance matrices, The Annals of Statistics, 36, 199-227. https://doi.org/10.1214/009053607000000758
- Bondell HD and Li L (2009). Shrinkage inverse regression estimation for model-free variable selection, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71, 287-299. https://doi.org/10.1111/j.1467-9868.2008.00686.x
- Boyd SP and Vandenberghe L (2004). Convex Optimization, Cambridge University Press, Cambridge.
- Bura E, Forzani L, Arancibia RG, Llop P, and Tomassi D (2022). Sufficient reductions in regression with mixed predictors, The Journal of Machine Learning Research, 23, 4377-4423.
- Chun H and Keles, S (2010). Sparse partial least squares regression for simultaneous dimension reduction and variable selection, Journal of the Royal Statistical Society Series B: Statistical Methodology, 72, 3-25. https://doi.org/10.1111/j.1467-9868.2009.00723.x
- Cook RD (2004). Testing predictor contributions in sufficient dimension reduction, The Annals of Statistics, 32, 1062-1092. https://doi.org/10.1214/009053604000000292
- Cook RD (2007). Fisher lecture: Dimension reduction in regression, Statistical Science, 22, 1-26. https://doi.org/10.1214/088342306000000682
- Cook RD and Weisberg S (1991). Discussion of "sliced inverse regression for dimension reduction", Journal of the American Statistical Association, 86, 28-33. https://doi.org/10.2307/2290564
- Fan J and Li R (2001). Variable section via nonconcave penalized likelihood and its oracle properties, Journal of the American Statistical Association, 96, 1348-1360. https://doi.org/10.1198/016214501753382273
- Forero PA, Cano A, and Giannakis GB (2010). Consensus-based distributed linear support vector machines, In Proceedings of the 9th ACM/IEEE International Conference on Information Processing in Sensor Networks, Stockholm, 35-46.
- Fukumizu K, Bach FR, and Gretton A (2007). Statistical consistency of kernel canonical correlation analysis, Journal of Machine Learning Research, 8, 361-383.
- Hastie T, Tibshirani R, Friedman J, and Friedman JH (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, New York.
- Hristache M, Juditsky A, Polzehl J, and Spokoiny V (2001). Structure adaptive approach for dimension reduction, Annals of Statistics, 29, 1537-1566. https://doi.org/10.1214/aos/1015345954
- Jang HJ, Shin SJ, and Artemiou A (2023). Principal weighted least square support vector machine: An online dimension-reduction tool for binary classification, Computational Statistics & Data Analysis, 187, 107818.
- Jiang B, Zhang X, and Cai T (2008). Estimating the confidence interval for prediction errors of support vector machine classifiers, Journal of Machine Learning Research, 9, 521-540.
- Jin J, Ying C, and Yu Z (2019). Distributed estimation of principal support vector machines for sufficient dimension reduction, Available from: arXiv preprint arXiv:1911.12732
- Kang J and Shin SJ (2022). A forward approach for sufficient dimension reduction in binary classification, The Journal of Machine Learning Research, 23, 9025-9055.
- Kapla D, Fertl L, and Bura E (2022). Fusing sufficient dimension reduction with neural networks, Computational Statistics & Data Analysis, 168, 107390.
- Kim B and Shin SJ (2019). Principal weighted logistic regression for sufficient dimension reduction in binary classification, Journal of the Korean Statistical Society, 48, 194-206. https://doi.org/10.1016/j.jkss.2018.11.001
- Kim H, Howland P, Park H, and Christianini N (2005). Dimension reduction in text classification with support vector machines, Journal of Machine Learning Research, 6, 37-53.
- Kim K, Li B, Zhou Y, and Li L (2020). On post dimension reduction statistical inference, The Annals of Statistics, 48, 1567-1592. https://doi.org/10.1214/19-AOS1859
- Koenker R and Bassett G (1978). Regression quantiles, Econometrica, 46, 33-50. https://doi.org/10.2307/1913643
- Kong E and Xia Y (2014). An adaptive composite quantile approach to dimension reduction, The Annals of Statistics, 42, 1657-1688. https://doi.org/10.1214/14-AOS1242
- Lee KY, Li B, and Chiaromonte F (2013). A general theory for nonlinear sufficient dimension reduction: Formulation and estimation, The Annals of Statistics, 41, 221-249. https://doi.org/10.1214/12-AOS1071
- Li B (2018). Sufficient Dimension Reduction: Methods and Applications with R, CRC Press, Boca Raton, FL.
- Li B, Artemiou A, and Li L (2011). Principal support vector machines for linear and nonlinear sufficient dimension reduction, The Annals of Statistics, 39, 3182-3210. https://doi.org/10.1214/11-AOS932
- Li B and Wang S (2007). On directional regression for dimension reduction, Journal of the American Statistical Association, 102, 997-1008. https://doi.org/10.1198/016214507000000536
- Li B, Zha H, and Chiaromonte F (2005). Contour regression: A general approach to dimension reduction, The Annals of Statistics, 33, 1580-1616. https://doi.org/10.1214/009053605000000192
- Li K-C (1991). Sliced inverse regression for dimension reduction (with discussion), Journal of the American Statistical Association, 86, 316-342. https://doi.org/10.2307/2290563
- Li K-C (1992). On principal Hessian directions for data visualization and dimension reduction: Another application of Stein's lemma, Journal of the American Statistical Association, 87, 1025-1039. https://doi.org/10.1080/01621459.1992.10476258
- Li L (2007). Sparse sufficient dimension reduction, Biometrika, 94, 603-613. https://doi.org/10.1093/biomet/asm044
- Li L (2010). Dimension reduction for high-dimensional data, Statistical Methods in Molecular Biology, 620, 417-434. https://doi.org/10.1007/978-1-60761-580-4_14
- Pearson K (1901). On lines and planes of closest fit to systems of points in space, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2, 559-572. https://doi.org/10.1080/14786440109462720
- Power MD and Dong Y (2021). Bayesian model averaging sliced inverse regression, Statistics & Probability Letters, 174, 109103.
- Quach H and Li B (2023). On forward sufficient dimension reduction for categorical and ordinal responses, Electronic Journal of Statistics, 17, 980-1006. https://doi.org/10.1214/23-EJS2122
- Reich BJ, Bondell HD, and Li L (2011). Sufficient dimension reduction via Bayesian mixture modeling, Biometrics, 67, 886-895. https://doi.org/10.1111/j.1541-0420.2010.01501.x
- Shin SJ and Artemiou A (2017). Penalized principal logistic regression for sparse sufficient dimension reduction, Computational Statistics & Data Analysis, 111, 48-58.
- Shin SJ, Wu Y, Zhang HH, and Liu Y (2017). Principal weighted support vector machines for sufficient dimension reduction in binary classification, Biometrika, 104, 67-81. https://doi.org/10.1093/biomet/asw057
- Soale A-N and Dong Y (2022). On sufficient dimension reduction via principal asymmetric least squares, Journal of Nonparametric Statistics, 34, 77-94. https://doi.org/10.1080/10485252.2021.2025237
- Tibshirani R (1996). Regression shrinkage and selection via the lasso, Journal of Royal Statistical Society, series B, 58, 267-288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
- Van der Vaart AW (2000). Asymptotic Statistics, Cambridge University Press, Cambridge.
- Vapnik V (1999). The Nature of Statistical Learning Theory, Springer Science & Business Media, New York.
- Wahba G (1999). Support vector machines, reproducing kernel Hilbert spaces, and randomized GACV, Advances in Kernel Methods-Support Vector Learning, 6, 69-87. https://doi.org/10.7551/mitpress/1130.003.0009
- Wang C, Shin SJ, and Wu Y (2018). Principal quantile regression for sufficient dimension reduction with heteroscedasticity, Electronic Journal of Statistics, 12, 2114-2140. https://doi.org/10.1214/18-EJS1432
- Weng J and Young DS (2017). Some dimension reduction strategies for the analysis of survey data, Journal of Big Data, 4, 1-19. https://doi.org/10.1186/s40537-017-0103-6
- Wu H-M (2008). Kernel sliced inverse regression with applications to classification, Journal of Computational and Graphical Statistics, 17, 590-610. https://doi.org/10.1198/106186008X345161
- Wu Y and Li L (2011). Asymptotic properties of sufficient dimension reduction with a diverging number of predictors, Statistica Sinica, 2011, 707.
- Xia Y (2007). A constructive approach to the estimation of dimension reduction directions, The Annals of Statistics, 35, 2654-2690. https://doi.org/10.1214/009053607000000352
- Xia Y, Tong H, Li WK, and Zhu L (2002). An adaptive estimation of dimension reduction space, Journal of the Royal Statistical Society Series B: Statistical Methodology, 64, 363-410. https://doi.org/10.1111/1467-9868.03411
- Yin X and Hilafu H (2015). Sequential sufficient dimension reduction for large p, small n problems, Journal of the Royal Statistical Society Series B: Statistical Methodology, 77, 879-892. https://doi.org/10.1111/rssb.12093
- Yin X, Li B, and Cook RD (2008). Successive direction extraction for estimating the central subspace in a multiple-index regression, Journal of Multivariate Analysis, 99, 1733-1757. https://doi.org/10.1016/j.jmva.2008.01.006
- Yuan M and Lin Y (2006). Model selection and estimation in regression with grouped variables, Journal of the Royal Statistical Society Series B: Statistical Methodology, 68, 49-67. https://doi.org/10.1111/j.1467-9868.2005.00532.x
- Zhang C-H (2010). Nearly unbiased variable selection under minimax concave penalty, The Annals of Statistics, 38, 894-942. https://doi.org/10.1214/09-AOS729
- Zhu L-P, Zhu L-X, and Feng Z-H (2010). Dimension reduction in regressions through cumulative slicing estimation, Journal of the American Statistical Association, 105, 1455-1466. https://doi.org/10.1198/jasa.2010.tm09666
- Zou H (2006). The adaptive lasso and its oracle properties, Journal of the American Statistical Association, 101, 1418-1429. https://doi.org/10.1198/016214506000000735
- Zou H and Hastie T (2005). Regularization and variable selection via the elastic net, Journal of the Royal Statistical Society Series B: Statistical Methodology, 67, 301-320. https://doi.org/10.1111/j.1467-9868.2005.00503.x