DOI QR코드

DOI QR Code

Development of Eco-Friendly Ag Embedded Peroxo Titanium Complex Solution Based Thin Film and Electrical Behaviors of Res is tive Random Access Memory

  • Won Jin Kim (Department of Foundry Engineering, Dankook University) ;
  • Jinho Lee (Department of Energy Engineering, Dankook University) ;
  • Ryun Na Kim (Department of Energy Engineering, Dankook University) ;
  • Donghee Lee (Department of Energy Engineering, Dankook University) ;
  • Woo-Byoung Kim (Department of Foundry Engineering, Dankook University)
  • Received : 2024.02.16
  • Accepted : 2024.03.21
  • Published : 2024.03.27

Abstract

In this study, we introduce a novel TiN/Ag embedded TiO2/FTO resistive random-access memory (RRAM) device. This distinctive device was fabricated using an environmentally sustainable, solution-based thin film manufacturing process. Utilizing the peroxo titanium complex (PTC) method, we successfully incorporated Ag precursors into the device architecture, markedly enhancing its performance. This innovative approach effectively mitigates the random filament formation typically observed in RRAM devices, and leverages the seed effect to guide filament growth. As a result, the device demonstrates switching behavior at substantially reduced voltage and current levels, heralding a new era of low-power RRAM operation. The changes occurring within the insulator depending on Ag contents were confirmed by X-ray photoelectron spectroscopy (XPS) analysis. Additionally, we confirmed the correlation between Ag and oxygen vacancies (Vo). The current-voltage (I-V) curves obtained suggest that as the Ag content increases there is a change in the operating mechanism, from the space charge limited conduction (SCLC) model to ionic conduction mechanism. We propose a new filament model based on changes in filament configuration and the change in conduction mechanisms. Further, we propose a novel filament model that encapsulates this shift in conduction behavior. This model illustrates how introducing Ag alters the filament configuration within the device, leading to a more efficient and controlled resistive switching process.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MIST) (No. 2022R1A2C1006148) and This research was supported by Nano·Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2009-0082580).

References

  1. S. Gao, X. Yi, J. Shang, G. Liu and R.-W. Li, Chem. Soc. Rev., 48, 1531 (2019). 
  2. J. Bera, A. Betal, A. Sharma, U. Shankar, A. K. Rath and S. Sahu, ACS Appl. Nano Mater., 5, 8502 (2022). 
  3. J. S. Meena, S. M. Sze, U. Chand and T.-Y. Tseng, Nanoscale Res. Lett., 9, 526 (2014). 
  4. H. Lee, P. Chen, T. Wu, Y. Chen, C. Wang, P. Tzeng, C. Lin, F. Chen, C. Lien and M.-J. Tsai, in Proceedings of the 2008 IEEE International Electron Devices Meeting (San Francisco, CA, December 2008) p. 1-4. 
  5. Y. Hosoi, Y. Tamai, T. Ohnishi, K. Ishihara, T. Shibuya, Y. Inoue, S. Yamazaki, T. Nakano, S. Ohnishi and N. Awaya, in Proceedings of the 2006 International Electron Devices Meeting (San Francisco, CA, December 2006) p. 1-4. 
  6. R. Waser and M. Aono, Nat. Mater., 6, 833 (2007). 
  7. D. Kumar, R. Aluguri, U. Chand and T.-Y. Tseng, Ceram. Int., 43, S547 (2017). 
  8. M. J. Lee, S. I. Kim, C. B. Lee, H. Yin, S. E. Ahn, B. S. Kang, K. H. Kim, J. C. Park, C. J. Kim and I. Song, Adv. Funct. Mater., 19, 1587 (2009). 
  9. B. Choi, D. S. Jeong, S. Kim, C. Rohde, S. Choi, J. Oh, H. Kim, C. Hwang, K. Szot and R. Waser, J. Appl. Phys., 98, 033715 (2005). 
  10. F. M. Simanjuntak, D. Panda, K.-H. Wei and T.-Y. Tseng, Nanoscale Res. Lett., 11, 368 (2016). 
  11. A. Sawa, Mater. Today, 11, 28 (2008). 
  12. F. Pontes, E. Longo, E. Leite and J. A. Varela, Thin Solid Films, 386, 91 (2001). 
  13. M.-J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y.-B. Kim, C.-J. Kim, D. H. Seo and S. Seo, Nat. Mater., 10, 625 (2011). 
  14. L. Qingjiang, A. Khiat, I. Salaoru, C. Papavassiliou, X. Hui and T. Prodromakis, Sci. Rep., 4, 4522 (2014). 
  15. M. H. Lee, K. M. Kim, G. H. Kim, J. Y. Seok, S. J. Song, J. H. Yoon and C. S. Hwang, Appl. Phys. Lett., 96, 152909 (2010). 
  16. S. M. George, Chem. Rev., 110, 111 (2010). 
  17. C. Liu, L.-G. Wang, K. Qin, Y.-Q. Cao, X.-J. Zhang, D. Wu and A.-D. Li, IEEE Trans. Electron Devices, 65, 4674 (2018). 
  18. M. Xiao, K. P. Musselman, W. W. Duley and Y. N. Zhou, ACS Appl. Mater. Interfaces, 9, 4808 (2017). 
  19. P. S. Schulze, K. Wienands, A. J. Bett, S. Rafizadeh, L. E. Mundt, L. Cojocaru, M. Hermle, S. W. Glunz, H. Hillebrecht and J. C. Goldschmidt, Thin Solid Films, 704, 137970 (2020). 
  20. H. Park, S. Joo, J.-P. Choi and W.-B. Kim, J. Powder Mater., 22, 396 (2015). 
  21. S. H. Ji, H. Park, D. Kim, D. H. Han, H. W. Yun and W.-B. Kim, Korean J. Mater. Res., 29, 183 (2019). 
  22. J. Lee, J. Hwang, H. Park, T. Sekino and W.-B. Kim, Appl. Surf. Sci., 540, 148399 (2021). 
  23. J. Lee, R. N. Kim, K.-R. Park and W.-B. Kim, Appl. Surf. Sci., 562, 150170 (2021). 
  24. C.-C. Hsieh, A. Roy, A. Rai, Y.-F. Chang and S. K. Banerjee, Appl. Phys. Lett., 106, 173108 (2015). 
  25. S. Kim, T.-H. Kim, H. Kim and B.-G. Park, Appl. Phys. Lett., 117, 202106 (2020). 
  26. D. Panda, C. Chu, A. Pradhan, S. Chandrasekharan, B. Pattanayak, S. Sze and T. Tseng, Semicond. Sci. Technol., 36, 045002 (2021). 
  27. Y.-J. Choi, M.-H. Kim, S. Bang, T.-H. Kim, D. K. Lee, K. Hong, C. S. Kim, S. Kim, S. Cho and B.-G. Park, IEEE Access, 8, 228720 (2020).  https://doi.org/10.1109/ACCESS.2020.3046300
  28. Y.-P. Hsiao, W.-L. Yang, L.-M. Lin, F.-T. Chin, Y.-H. Lin, K.-L. Yang and C.-C. Wu, Microelectron. Reliab., 55, 2188 (2015). 
  29. N. Naseri, H. Kim, W. Choi and A. Moshfegh, Int. J. Hydrogen Energy, 37, 3056 (2012). 
  30. E. Albiter, M. Valenzuela, S. Alfaro, G. Valverde-Aguilar and F. Martinez-Pallares, J. Saudi Chem. Soc., 19, 563 (2015). 
  31. Z. Wang, S. Joshi, S. E. Savel'ev, H. Jiang, R. Midya, P. Lin, M. Hu, N. Ge, J. P. Strachan and Z. Li, Nat. Mater., 16, 101 (2017). 
  32. H. Yeon, P. Lin, C. Choi, S. H. Tan, Y. Park, D. Lee, J. Lee, F. Xu, B. Gao and H. Wu, Nat. Nanotechnol., 15, 574 (2020). 
  33. H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T. Chen and M.-J. Tsai, Proc. IEEE, 100, 1951 (2012). 
  34. K.-C. Kwon, M.-J. Song, K.-H. Kwon, H.-V. Jeoung, D.-W. Kim, G.-S. Lee, J.-P. Hong and J.-G. Park, J. Mater. Chem. C, 3, 9540 (2015). 
  35. R.-C. Fang, Q.-Q. Sun, P. Zhou, W. Yang, P.-F. Wang and D. W. Zhang, Nanoscale Res. Lett., 8, 92 (2013). 
  36. T. Wang, H. Xiao, Y. Gao, J. Xu, Z. Zhang, H. Bian and T. Sun, J. Mater. Sci.: Mater. Electron., 31, 11496 (2020). 
  37. C. Su, L. Liu, M. Zhang, Y. Zhang and C. Shao, CrystEng Comm, 14, 3989 (2012). 
  38. M. Padilla Villavicencio, A. Escobedo Morales, M. d. L. Ruiz Peralta, M. Sanchez-Cantu, L. Rojas Blanco, E. Chigo Anota, J. H. Camacho Garcia and F. Tzompantzi, Catal. Lett., 150, 2385 (2020). 
  39. H. W. Chen, Y. Ku and Y. L. Kuo, Chem. Eng. Technol., 30, 1242 (2007). 
  40. A. Regoutz, I. Gupta, A. Serb, A. Khiat, F. Borgatti, T. L. Lee, C. Schlueter, P. Torelli, B. Gobaut and M. Light, Adv. Funct. Mater., 26, 507 (2016). 
  41. S. Yu and H.-S. P. Wong, IEEE Trans. Electron Devices, 58, 1352 (2011). 
  42. L. Gao, Y. Li, Q. Li, Z. Song and F. Ma, Nanotechnology, 28, 215201 (2017). 
  43. Y. Chen, H. Lee, P. Chen, P. Gu, C. Chen, W. Lin, W. Liu, Y. Hsu, S. Sheu and P. Chiang, in Proceedings of the 2009 IEEE International Electron Devices Meeting (IEDM) (Baltimore, MD, December 2009) p. 1-4. 
  44. W. Guan, S. Long, R. Jia and M. Liu, Appl. Phys. Lett., 91, 062111 (2007). 
  45. A. Hao, M. Ismail, S. He, N. Qin, W. Huang, J. Wu and D. Bao, RSC Adv., 7, 46665 (2017). 
  46. Y. Huang, Z. Shen, Y. Wu, X. Wang, S. Zhang, X. Shi and H. Zeng, RSC Adv., 6, 17867 (2016). 
  47. Y.-L. Chung, W.-H. Cheng, J.-S. Jeng, W.-C. Chen, S.-A. Jhan and J.-S. Chen, J. Appl. Phys., 116, 164502 (2014). 
  48. Y. Xia, B. Sun, H. Wang, G. Zhou, X. Kan, Y. Zhang and Y. Zhao, Appl. Surf. Sci., 426, 812 (2017). 
  49. J. Jiang, D. G. Lim, K. Ramadoss and S. Ramanathan, Solid-State Electron., 146, 13 (2018). 
  50. D.-H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Li, G.-S. Park, B. Lee and S. Han, Nat. Nanotechnol., 5, 148 (2010). 
  51. U. Diebold, Surf. Sci. Rep., 48, 53 (2003). 
  52. A. Janotti, J. Varley, P. Rinke, N. Umezawa, G. Kresse and C. Van de Walle, Phys. Rev. B, 81, 085212 (2010). 
  53. J. J. Yang, F. Miao, M. D. Pickett, D. A. Ohlberg, D. R. Stewart, C. N. Lau and R. S. Williams, Nanotechnology, 20, 215201 (2009). 
  54. T. Tsuruoka, K. Terabe, T. Hasegawa and M. Aono, Nanotechnology, 21, 425205 (2010). 
  55. J. J. Yang, J. Borghetti, D. Murphy, D. R. Stewart and R. S. Williams, Adv. Mater., 21, 3754 (2009).