DOI QR코드

DOI QR Code

Use of veterinary medicinal products in the Philippines: regulations, impact, challenges, and recommendations

  • Maria Ruth B. Pineda-Cortel (The Graduate School, University of Santo Tomas) ;
  • Elner H. del Rosario (The Graduate School, University of Santo Tomas) ;
  • Oliver B. Villaflores (The Graduate School, University of Santo Tomas)
  • Received : 2023.05.19
  • Accepted : 2023.08.31
  • Published : 2024.03.31

Abstract

Agricultural production is a major driver of the Philippine economy. Mass production of animal products, such as livestock and poultry farming, is one of the most prominent players in the field. Filipino farmers use veterinary medicinal products (VMPs) when raising agricultural animals to improve animal growth and prevent diseases. Unfortunately, the extensive use of VMPs, particularly antibiotics, has been linked to drug resistance in animals, particularly antibiotics. Antimicrobial gene products produced in animals due to the prolonged use of VMPs can passed on to humans when they consume animal products. This paper reviews information on the use of VMPs in the Philippines, including the regulations, their impact, challenges, and potential recommendations. The Philippines has existing legislation regulating VMP use. Several agencies were tasked to regulate the use of VMPs, such as the Department of Agriculture, the Department of Health, and the Philippine National Action Plan. Unfortunately, there is a challenge to implementing these regulations, which affects consumers. The unregulated use of VMPs influences the transmission of antibiotic residues from animals to crops to humans. This challenge should be addressed, with more focus on stricter regulation.

Keywords

References

  1. Bhunia S, Bhowmik A, Mallick R, Mukherjee J. Agronomic efficiency of animal-derived organic fertilizers and their effects on biology and fertility of soil: a review. Agronomy (Basel). 2021;11(5):823.
  2. Barroga TR, Morales RG, Benigno CC, Castro SJ, Caniban MM, Cabullo MF, et al. Antimicrobials used in backyard and commercial poultry and swine farms in the philippines: a qualitative pilot study. Front Vet Sci. 2020;7:329.
  3. Huygens J, Daeseleire E, Mahillon J, Van Elst D, Decrop J, Meirlaen J, et al. Presence of antibiotic residues and antibiotic resistant bacteria in cattle manure intended for fertilization of agricultural fields: a one health perspective. Antibiotics (Basel). 2021;10(4):410.
  4. National Research Council. The Use of Drugs in Food Animals. Washington, D.C.: National Academies Press, 1999.
  5. World Health Organization. Antimicrobial resistance [Internet]. Geneva: World Health Organization; https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance. Updated 2023. Accessed 2022 Apr 14.
  6. Marshall BM, Levy SB. Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev. 2011;24(4):718-733. https://doi.org/10.1128/CMR.00002-11
  7. Qiao M, Ying GG, Singer AC, Zhu YG. Review of antibiotic resistance in China and its environment. Environ Int. 2018;110:160-172. https://doi.org/10.1016/j.envint.2017.10.016
  8. Manaia CM. Assessing the risk of antibiotic resistance transmission from the environment to humans: non-direct proportionality between abundance and risk. Trends Microbiol. 2017;25(3):173-181. https://doi.org/10.1016/j.tim.2016.11.014
  9. Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MO, Dantas G. The shared antibiotic resistome of soil bacteria and human pathogens. Science. 2012;337(6098):1107-1111. https://doi.org/10.1126/science.1220761
  10. Aidara-Kane A, Angulo FJ, Conly JM, Minato Y, Silbergeld EK, McEwen SA, et al. World Health Organization (WHO) guidelines on use of medically important antimicrobials in food-producing animals. Antimicrob Resist Infect Control. 2018;7(1):7.
  11. Food and Drug Administration. R. of the Philippines. Rules on the Regulation of Veterinary Drugs and Products, Veterinary Biological Products, and Veterinary Drugs Establishments. Joint Department of Health-Department of Agriculture Administrative Order 2013-0026 [Internet]. Silver Spring: Food and Drug Administration; https://ww2.fda.gov.ph/index.php/issuances-2/pharml-1/pharmladministrative-order/111167-joint-doh-da-ao-2013-0026. Updated 2013. Accessed 2023 May 5.
  12. Gundran RS, Cardenio PA, Salvador RT, Sison FB, Benigno CC, Kreausukon K, et al. Prevalence, antibiogram, and resistance profile of extended-spectrum β-lactamase-producing Escherichia coli isolates from pig farms in Luzon, Philippines. Microb Drug Resist. 2020;26(2):160-168. https://doi.org/10.1089/mdr.2019.0019
  13. Gundran RS, Cardenio PA, Villanueva MA, Sison FB, Benigno CC, Kreausukon K, et al. Prevalence and distribution of blaCTX-M, blaSHV, blaTEM genes in extended-spectrum β-lactamase-producing E. coli isolates from broiler farms in the Philippines. BMC Vet Res. 2019;15(1):227.
  14. Lim PW, Tiam-Lee DC, Paclibare PA, Subejano MS, Cabero-Palma JA, Penuliar GM. High rates of contamination of poultry meat products with drug-resistant campylobacter in Metro Manila, Philippines. Jpn J Infect Dis. 2017;70(3):311-313. https://doi.org/10.7883/yoken.JJID.2016.309
  15. Ng KC, Rivera WL. Antimicrobial resistance of salmonella enterica isolates from tonsil and jejunum with lymph node tissues of slaughtered swine in Metro Manila, Philippines. ISRN Microbiol. 2014;2014:364265.
  16. Elumba Z, Allera M, Taganas R. Occurrence and antibiotic sensitivity of Escherichia coli and Salmonella spp. in retail chicken meat at selected markets in Valencia City, Bukidnon, Philippines. Asian J Biol Life Sci. 2018;7(2):53-58. https://doi.org/10.5530/ajbls.2018.7.4
  17. Legario FS, Choresca CH Jr, Turnbull JF, Crumlish M. Isolation and molecular characterization of streptococcal species recovered from clinical infections in farmed Nile tilapia (Oreochromis niloticus) in the Philippines. J Fish Dis. 2020;43(11):1431-1442. https://doi.org/10.1111/jfd.13247
  18. Karp BE, Leeper MM, Chen JC, Tagg KA, Francois Watkins LK, Friedman CR. Multidrug-resistant salmonella serotype Anatum in travelers and seafood from Asia, United States. Emerg Infect Dis. 2020;26(5):1030-1033. https://doi.org/10.3201/eid2605.190992
  19. Saloma CP, Penir SMU, Azanza JMR, Dela Pena LD, Usero RC, Cabillon NAR, et al. Draft genome sequence of multidrug-resistant vibrio parahaemolyticus strain PH698, infecting penaeid shrimp in the Philippines. Microbiol Resour Announc. 2019;8(47):e01040-19.
  20. Tendencia E, de La Pena L. Antibiotic resistance of bacteria from shrimp ponds. Aquaculture. 2001;195(3-4):193-204. https://doi.org/10.1016/S0044-8486(00)00570-6
  21. Tendencia E, dela Pena L. Level and percentage recovery of resistance to oxytetracycline and oxolinic acid of bacteria from shrimp ponds. Aquaculture. 2002;213(1-4):1-13. https://doi.org/10.1016/S0044-8486(02)00017-0
  22. Obusan M, Aragones L, Rivera W, Siringan MA. Antibiotic susceptibility patterns of bacteria isolated from cetaceans stranded in the Philippines. Aquat Mamm. 2018;44(5):568-579.
  23. Garcia G, Francua A, Costales K, Balbin M, Mingala C. Molecular detection of tetracycline and sulfonamide resistance genes in respiratory and gastrointestinal bacterial isolates of ruminants. Int J Vet Sci. 2019;8(1):1-9.
  24. Torio H, Padilla M. Multiple resistance to medically important antimicrobials of commensal Escherichia coli isolated from dressed broiler chickens in Calabarzon, Philippines. Philipp J Vet Med. 2018;55(2):95-106.
  25. Padilla M, Amatorio M. High level resistance and multi-resistance to medically important antimicrobials in Escherichia coli Isolated from healthy pigs at slaughter in Laguna, Philippines. Philipp J Vet Med. 2017;54(1):36-45.