DOI QR코드

DOI QR Code

Ovarian cell aggregate culture in teleost, marine medaka (Oryzias dancena): basic culture conditions and characterization

  • Jae Hoon, Choi (Department of Fisheries Biology, Pukyong National University) ;
  • Seung Pyo Gong (Department of Fisheries Biology, Pukyong National University)
  • Received : 2023.12.14
  • Accepted : 2024.01.18
  • Published : 2024.03.31

Abstract

Background: Although an understanding of the proliferation and differentiation of fish female germline stem cells (GSCs) is very important, an appropriate threedimensional (3D) research model to study them is not well established. As a part of the development of stable 3D culture system for fish female GSCs, we conducted this study to establish a 3D aggregate culture system of ovarian cells in marine medaka, Oryzias dancena. Methods: Ovarian cells were separated by Percoll density gradient centrifugation and two different cell populations were cultured in suspension to form ovarian cell aggregates to find suitable cell populations for its formation. Ovarian cell aggregates formed from different cell populations were evaluated by histology and gene expression analyses. To evaluate the media supplements, ovarian cell aggregate culture was performed under different media conditions, and the morphology, viability, size, gene expression, histology, and E2 secretion of ovarian cell aggregates were analyzed. Results: Ovarian cell aggregates were able to be formed well under specific culture conditions that used ultra-low attachment 96 well plate, complete mESM2, and the cell populations from top to 50% layers after separation of ovarian cells. Moreover, they were able to maintain minimal ovarian function such as germ cell maintenance and E2 synthesis for a short period. Conclusions: We established basic conditions for the culture of O. dancena ovarian cell aggregates. Additional efforts will be required to further optimize the culture conditions so that the ovarian cell aggregates can retain the improved ovarian functions for a longer period of time.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded from the Korea government (MSIT) (No. 2019R1F1A1058145) and by the National Institute of Fisheries Science, Ministry of Oceans and Fisheries, Korea (R2024019).

References

  1. Aflatoonian B, Ruban L, Jones M, Aflatoonian R, Fazeli A, Moore HD. 2009. In vitro post-meiotic germ cell development from human embryonic stem cells. Hum. Reprod. 24: 3150-3159. 
  2. Alves-Lopes JP, Soder O, Stukenborg JB. 2017. Testicular organoid generation by a novel in vitro three-layer gradient system. Biomaterials 130:76-89. 
  3. Choi JH, Ryu JH, Gong SP. 2023. Establishment and optimization of an aggregate culture system of testicular cells from marine medaka, Oryzias dancena. J. Mar. Sci. Eng. 11:2077. 
  4. Collodi P and Barnes DW. 1990. Mitogenic activity from trout embryos. Proc. Natl. Acad. Sci. U. S. A. 87:3498-3502. 
  5. Gautier A, Bosseboeuf A, Auvray P, Sourdaine P. 2014. Maintenance of potential spermatogonial stem cells in vitro by GDNF treatment in a chondrichthyan model (Scyliorhinus canicula L.). Biol. Reprod. 91:91. 
  6. Ge W, Chen C, De Felici M, Shen W. 2015. In vitro differentiation of germ cells from stem cells: a comparison between primordial germ cells and in vitro derived primordial germ cell-like cells. Cell Death Dis. 6:e1906. 
  7. Graziano MU, Graziano KU, Pinto FM, Bruna CQ, de Souza RQ, Lascala CA. 2013. Effectiveness of disinfection with alcohol 70% (w/v) of contaminated surfaces not previously cleaned. Rev. Lat. Am. Enfermagem 21:618-623. 
  8. Higaki S, Shimada M, Kawamoto K, Todo T, Kawasaki T, Tooyama I, Fujioka Y, Sakai N, Takada T. 2017. In vitro differentiation of fertile sperm from cryopreserved spermatogonia of the endangered endemic cyprinid honmoroko (Gnathopogon caerulescens). Sci. Rep. 7:42852. 
  9. Iwasaki-Takahashi Y, Shikina S, Watanabe M, Banba A, Yagisawa M, Takahashi K, Fujihara R, Okabe T, Valdez DM Jr, Yamauchi A, Yoshizaki G. 2020. Production of functional eggs and sperm from in vitro-expanded type A spermatogonia in rainbow trout. Commun. Biol. 3:308. 
  10. Jeong Y, Ryu JH, Nam YK, Gong SP, Kang SM. 2018. Enhanced adhesion of fish ovarian germline stem cells on solid surfaces by mussel-inspired polymer coating. Mar. Drugs 17:11. 
  11. Kanatsu-Shinohara M, Muneto T, Lee J, Takenaka M, Chuma S, Nakatsuji N, Horiuchi T, Shinohara T. 2008. Long-term culture of male germline stem cells from hamster testes. Biol. Reprod. 78:611-617. 
  12. Kanatsu-Shinohara M, Ogonuki N, Inoue K, Miki H, Ogura A, Toyokuni S, Shinohara T. 2003. Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol. Reprod. 69:612-616. 
  13. Kawasaki T, Saito K, Sakai C, Shinya M, Sakai N. 2012. Production of zebrafish offspring from cultured spermatogonial stem cells. Genes Cells 17:316-325. 
  14. Kitano T, Takenaka T, Takagi H, Yoshiura Y, Kazeto Y, Hirai T, Mukai K, Nozu R. 2022. Roles of gonadotropin receptors in sexual development of medaka. Cells 11:387. 
  15. Lacerda SM, Costa GM, de Franca LR. 2014. Biology and identity of fish spermatogonial stem cell. Gen. Comp. Endocrinol. 207:56-65. 
  16. Livak KJ and Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402-408. 
  17. Li X, Zheng M, Xu B, Li D, Shen Y, Nie Y, Ma L, Wu J. 2021. Generation of offspring-producing 3D ovarian organoids derived from female germline stem cells and their application in toxicological detection. Biomaterials 279:121213. 
  18. Luo H, Li X, Tian GG, Li D, Hou C, Ding X, Hou L, Lyu Q, Yang Y, Cooney AJ, Xie W, Xiong J, Wang H, Zhao X, Wu J. 2021. Offspring production of ovarian organoids derived from spermatogonial stem cells by defined factors with chromatin reorganization. J. Adv. Res. 33:81-98. 
  19. Maru Y, Tanaka N, Itami M, Hippo Y. 2019. Efficient use of patient-derived organoids as a preclinical model for gynecologic tumors. Gynecol. Oncol. 154:189-198. 
  20. Masaki K, Sakai M, Kuroki S, Jo JI, Hoshina K, Fujimori Y, Oka K, Amano T, Yamanaka T, Tachibana M, Tabata Y, Shiozawa T, Ishizuka O, Hochi S, Takashima S. 2018. FGF2 has distinct molecular functions from GDNF in the mouse germline niche. Stem Cell Reports 10:1782-1792. 
  21. Meng X, Lindahl M, Hyvonen ME, Parvinen M, de Rooij DG, Hess MW, Raatikainen-Ahokas A, Sainio K, Rauvala H, Lakso M, Pichel JG, Westphal H, Saarma M, Sariola H. 2000. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287:1489-1493. 
  22. Ogiwara K, Fujimori C, Rajapakse S, Takahashi T. 2013. Characterization of luteinizing hormone and luteinizing hormone receptor and their indispensable role in the ovulatory process of the medaka. PLoS One 8:e54482. 
  23. Okutsu T, Yano A, Nagasawa K, Shikina S, Kobayashi T, Takeuchi Y, Yoshizaki G. 2006. Manipulation of fish germ cell: visualization, cryopreservation and transplantation. J. Reprod. Dev. 52:685-693. 
  24. Panda RP, Barman HK, Mohapatra C. 2011. Isolation of enriched carp spermatogonial stem cells from Labeo rohita testis for in vitro propagation. Theriogenology 76:241-251. 
  25. Reuter K, Ehmcke J, Stukenborg JB, Simoni M, Damm OS, Redmann K, Schlatt S, Wistuba J. 2014. Reassembly of somatic cells and testicular organogenesis in vitro. Tissue Cell 46:86-96. 
  26. Ryu JH and Gong SP. 2017. Effects of the developmental stage of extract donor embryos on the culture of marine medaka Oryzias dancena embryonic stem cell-like cells. Korean J. Fish. Aquat. Sci. 50:160-168. 
  27. Ryu JH and Gong SP. 2020. Enhanced enrichment of medaka ovarian germline stem cells by a combination of density gradient centrifugation and differential plating. Biomolecules 10:1477. 
  28. Sadri-Ardekani H, Mizrak SC, van Daalen SK, Korver CM, Roepers-Gajadien HL, Koruji M, Hovingh S, de Reijke TM, de la Rosette JJ, van der Veen F, de Rooij DG, Repping S, van Pelt AM. 2009. Propagation of human spermatogonial stem cells in vitro. JAMA 302:2127-2134. 
  29. Spradling A, Fuller MT, Braun RE, Yoshida S. 2011. Germline stem cells. Cold Spring Harb. Perspect. Biol. 3:a002642. 
  30. Sun X, Tao B, Wang Y, Hu W, Sun Y. 2022. Isolation and characterization of germline stem cells in protogynous hermaphroditic Monopterus albus. Int. J. Mol. Sci. 23:5861. 
  31. Suyatno, Kitamura Y, Ikeda S, Minami N, Yamada M, Imai H. 2018. Long-term culture of undifferentiated spermatogonia isolated from immature and adult bovine testes. Mol. Reprod. Dev. 85:236-249. 
  32. Wong TT, Tesfamichael A, Collodi P. 2013. Production of zebrafish offspring from cultured female germline stem cells. PLoS One 8:e62660. 
  33. Wu Z, Falciatori I, Molyneux LA, Richardson TE, Chapman KM, Hamra FK. 2009. Spermatogonial culture medium: an effective and efficient nutrient mixture for culturing rat spermatogonial stem cells. Biol. Reprod. 81:77-86. 
  34. Xie X, Nobrega R, Psenicka M. 2020. Spermatogonial stem cells in fish: characterization, isolation, enrichment, and recent advances of in vitro culture systems. Biomolecules 10:644. 
  35. Xu Y, Shrestha N, Preat V, Beloqui A. 2021. An overview of in vitro, ex vivo and in vivo models for studying the transport of drugs across intestinal barriers. Adv. Drug Deliv. Rev. 175: 113795. 
  36. Yom-Din S, Hollander-Cohen L, Aizen J, Boehm B, Shpilman M, Golan M, Hurvitz A, Degani G, Levavi-Sivan B. 2016. Gonadotropins in the Russian sturgeon: their role in steroid secretion and the effect of hormonal treatment on their secretion. PLoS One 11:e0162344. 
  37. Zhang H, Zhang WW, Mo CY, Dong MD, Jia KT, Liu W, Yi MS. 2022. Production of functional sperm from in vitro-cultured premeiotic spermatogonia in a marine fish. Zool. Res. 43: 537-551.