DOI QR코드

DOI QR Code

Advancing the Frontier in Alkaline Promoter Performance Evaluation: Exploring Simplified Adoption Methods

알칼리 촉진제 성능 측정의 새로운 전환점: 도입 방식의 단순화를 통한 탐구

  • Wonjoong Yoon (Department of Chemical Engineering, SKKU) ;
  • Jiyeon Lee (Department of Chemical Engineering, SKKU) ;
  • Jaehoon Kim (Department of Chemical Engineering, SKKU)
  • 윤원중 (성균관대학교 화학공학과) ;
  • 이지연 (성균관대학교 화학공학과) ;
  • 김재훈 (성균관대학교 화학공학과)
  • Received : 2024.02.27
  • Accepted : 2024.03.04
  • Published : 2024.03.31

Abstract

In this study, an alkali metal Na was introduced into iron-based catalysts used in the carbon dioxide-based Fischer-Tropsch process by wet impregnation and physical mixing methods to compare their performance. The as-prepared catalysts were evaluated for reactivity at 3.5 MPa, 330 ℃, feed ratio of H2/CO2 = 3 with a space velocity of 4,000 mL h-1 gcat-1. Comparing the two catalysts, it was found that Na was uniformly distributed throughout the catalyst when wet-impregnated, but Na for physically mixed catalyst was relatively located on the surface of the catalyst. In addition, the wet-impregnated catalyst showed higher liquid hydrocarbon (C5+) yield and lower CO selectivity. In conclusion, the effect of Na distribution in the catalyst on the reaction was identified and can be controlled by the introduction method.

본 연구에서는 이산화탄소를 기반으로한 피셔-트롭시 반응에 사용되는 철계 촉매에 알칼리 금속인 Na를 함침 및 물리적 혼합 방식으로 도입하여 각각의 성능을 비교하였다. 제조된 촉매는 3.5 MPa, 330 ℃, H2/CO2 = 3의 가스 조성비에서 공간속도 4,000 mL h-1 gcat-1 조건으로 반응성을 평가하였다. 두 가지 촉매를 비교한 결과 Na를 함침한 경우 Na가 촉매 전체에 균일하게 분산되어 있지만 물리적 방법으로 혼합한 촉매는 상대적으로 표면에 위치하였다. 또한 Na를 함침한 촉매가 더 높은 액체 탄화수소(C5+) 수율과 낮은 CO 선택도를 보였다. 결론적으로 촉매 내의 Na 분포가 반응에 미치는 영향을 파악하였으며 도입 방식을 통해 이를 조절할 수 있음을 확인하였다.

Keywords

References

  1. https://climate.copernicus.eu/global-climate-highlights-2023 (accessed Feb. 2024).
  2. https://www.gir.go.kr/home/board/read.do?pagerOffset=0&maxPageItems=10&maxIndexPages=10&searchKey=&searchValue=&menuId=36&boardId=62&boardMasterId=2&boardCategoryId= (accessed Feb. 2024).
  3. IEA (2019), Putting CO2 to Use, IEA, Paris https://www.iea.org/ reports/putting-co2-to-use (accessed Feb. 2024).
  4. Do, T. N., You, C., and Kim, J., "A CO2 Utilization Framework for Liquid Fuels and Chemical Production: Techno-Economic and Environmental Analysis," Energy Environ. Sci., 15, 169-184 (2022).
  5. Ye, R. P., Ding, J., Gong, W., Argyle, M. D., Zhong, Q., Wang, Y., Russell, C. K., Xu, Z., Russell, A. G., Li, Q., Fan, M., and Yao, Y. G., "CO2 Hydrogenation to High-Value Products via Heterogeneous Catalysis," Nat. Commun., 10, 5698 (2019).
  6. Wang, W., Wang, S., Ma, X., and Gong, J., "Recent Advances in Catalytic Hydrogenation of Carbon Dioxide," Chem. Soc. Rev., 40, 3703-3727 (2011).
  7. Liu, Q., Wu, L., Jackstell, R., and Beller, M., "Using Carbon Dioxide as a Building Block in Organic Synthesis," Nat. Commun., 6, 5933 (2015).
  8. Gao, P., Li, S., Bu, X., Dang, S., Liu, Z., Wang, H., Zhong, L., Qiu, M., Yang, C., Cai, J., Wei, W., and Sun, Y., "Direct Conversion of CO2 into Liquid Fuels with High Selectivity over a Bifunctional Catalyst," Nat. Chem., 9, 1019-1024 (2017).
  9. Paalanen, P. P. and Weckhuysen, B. M., "Carbon Pathways, Sodium-Sulphur Promotion and Identification of Iron Carbides in Iron-based Fischer-Tropsch Synthesis," ChemCatChem., 12, 4202-4223 (2020).
  10. Kirchner, J., Baysal, Z., and Kureti, S., "Activity and Structural Changes of Fe-based Catalysts during CO2 Hydrogenation Towards CH4," ChemCatChem., 12, 981-988 (2020).
  11. Kirchner, J., Zambrzycki, C., Baysal, Z., Guttel, R., and Kureti, S., "Fe Based Core-Shell Model Catalysts for the Reaction of CO2 with H2," React. Kinet. Mech. Catal., 131, 119-128 (2020).
  12. Gaube, J. and Klein, H.-F., "The Promoter Effect of Alkali in Fischer-Tropsch Iron and Cobalt Catalysts," Appl. Catal., A, 350, 126-132 (2008).
  13. Lee, C. Y. and Kim, E. Y., "Effects of Cu and K Addition on Catalytic Activity for Fe-based Fischer-Tropsch Reaction," Clean Technol., 25(1), 1-6 (2019).
  14. Khan, M. K., Butolia, P., Jo, H., Irshad, M., Han, D., Nam, K.-W., and Kim, J., "Selective Conversion of Carbon Dioxide into Liquid Hydrocarbons and Long-Chain α-Olefins over FeAmorphous AlOx Bifunctional Catalysts," ACS Catal., 10(18), 10325-10338 (2020).
  15. Liang, B., Duan, H., Sun, T., Ma, J., Liu, X., Xu, J., Su, X., Huang, Y., and Zhang, T., "Effect of Na Promoter on Fe-Based Catalyst for CO2 Hydrogenation to Alkenes," ACS Sustain. Chem. Eng., 7(1), 925-932 (2019).
  16. Ould-Chikh, Samy, Vollmer, Ina, and Aguilar Tapia, Antonio, "Fe K Edge XAS HERFD (Kbeta1,3) and XES of Synthetic Haggcarbide Fe5C2 at Ambient Conditions," SSHADE/FAME (OSUG Data Center), Dataset/Spectral Data (2018).
  17. Ould-Chikh, Samy, Vollmer, Ina, and Aguilar Tapia, Antonio, "Fe K Edge XAS HERFD (Kbeta1,3) and XES of Synthetic Magnetite Fe3O4 at Ambient Conditions," SSHADE/FAME (OSUG Data Center), Dataset/Spectral Data (2018).
  18. de Smit, E., Cinquini, F., Beale, A. M., Safonova, O. V., van Beek, W., Sautet, P., and Weckhuysen, B. M., "Stability and Reactivity of 𝜀-𝜒-𝜃 Iron Carbide Catalyst Phases in Fischer-Tropsch Synthesis: Controlling μC," J. Am. Chem. Soc., 132(42), 14928-14941 (2010).