Acknowledgement
본 과제는 2023년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다(2023RIS-008).
References
- Bing, Y., Liu, H., Zhang, L., Ghosh, D., and Zhang, J., "Nanostructured Pt-Alloy Electrocatalysts for PEM Fuel Cell Oxygen Reduction Reaction," Chem. Soc. Rev., 39(6), 2184-2202 (2010). https://doi.org/10.1039/b912552c
- Zou, L., Li,J., Yuan, T., Zhou, Y., Li, X., and Yang, H., "Structural Transformation of Carbon-Supported Pt3Cr Nanoparticles from a Disordered to an Ordered Phase as a Durable Oxygen Reduction Electrocatalyst," Nanoscale, 6(18), 10686-10692 (2014). https://doi.org/10.1039/C4NR02799J
- Liu, M., Zhao, Z., Duan, X., and Huang, Y., "Nanoscale Structure Design for High-Performance Pt-Based ORR Catalysts," Advanced Materials, 31(6), 1802234 (2019).
- Lu, X. F., Xia, B. Y., Zang, S. Q., and Lou, X. W., "Metal-Organic Frameworks Based Electrocatalysts for the Oxygen Reduction Reaction," Angewandte Chemie, 132(12), 4662-4678 (2020). https://doi.org/10.1002/ange.201910309
- Li, K., Li, X., Huang, H., Luo, L., Li, X., Yan, X., Ma, C., Si, R., Yang, J., and Zeng, J., "One-Nanometer-Thick PtNiRh Trimetallic Nanowires with Enhanced Oxygen Reduction Electrocatalysis in Acid Media: Integrating Multiple Advantagesinto One Catalyst," J. Am. Chem. Soc., 140(47), 16159-16167 (2018).
- Li, J., Sharma, S., Liu, X., Pan, Y. T., Spendelow, J. S., Chi, M., Jia, Y., Zhang, P., Cullen, D. A., Xi, Z., Lin, H., Yin, Z., Shen, B., Muzzio, M., Yu, C., Kim, Y. S., Peterson, A.A., More, K. L., Zhu, H., and Sun, S., "Hard-Magnet L10-CoPt Nanoparticles Advance Fuel Cell Catalysis," Joule, 3(1), 124-135 (2019). https://doi.org/10.1016/j.joule.2018.09.016
- Yang, W., Zou, L., Huang, Q., Zou, Z., Hu, Y., and Yang, H., "Lattice Contracted Ordered Intermetallic Core-Shell PtCo@ Pt Nanoparticles: Synthesis, Structure and Origin for Enhanced Oxygen Reduction Reaction," J. Electrochem. Soc., 164(6), H331-H337 (2017).
- Bu, L., Guo, S., Zhang, X., Shen, X., Su, D., Lu, G., Zhu, X.,Yao, J., Guo, J., and Huang, X., "Surface Engineering of Hierarchical Platinum-Cobalt Nanowires for Efficient Electrocatalysis," Nat. Commun., 7, 11850 (2016).
- Antolini, E., Salgado, J. R. C., and Gonzalez, E. R., "The Stability of Pt-M (M=First Row Transition Metal) Alloy Catalysts and its Effect on the Activity in Low Temperature Fuel Cells," J. Power Sources, 160(2), 957-968 (2006). https://doi.org/10.1016/j.jpowsour.2006.03.006
- Gong, M., Deng, Z., Xiao, D., Han, L., Zhao, T., Lu, Y., Shen, T., Liu, X., Lin, R., Huang, T., Zhou, G., Xin, H., andWang, D., "One-Nanometer-Thick Pt3Ni Bimetallic Alloy Nanowires Advanced Oxygen Reduction Reaction: Integrating Multiple Advantages into One Catalyst," ACS Catal., 9(5), 4488-4494 (2019).
- Kim, J. and Kim, Y., "Effect of Co-catalyst CeO2 on NOx Reduction in PtNi/W-TiO2 Catalysts for Low-temperature H2-SCR," Clean Technol., 29(4), 313-320 (2023).
- Kattel, S. and Wang, G., "Beneficial Compressive Strain for Oxygen Reduction Reaction on Pt (111) Surface," J. Chem. Phys., 141(12), 124713 (2014).
- Hyman, M. P. and Will Medlin, J., "Effects of Electronic Structure Modifications on the Adsorption of Oxygen Reduction Reaction Intermediates on Model Pt (111)-Alloy Surfaces," J. Phys. Chem. C, 111(45), 17052-17060 (2007). https://doi.org/10.1021/jp075108g
- Zhao, X., Xi, C., Zhang, R., Song, L., Wang, C., Spendelow, J. S., Frenkel, A. I., Yang, J., Xin, H. L., and Sasaki, K., "High-Performance Nitrogen-Doped Intermetallic PtNi Catalyst for the Oxygen Reduction Reaction," ACS Catal., 10(18), 10637-10645 (2020). https://doi.org/10.1021/acscatal.0c03036
- Kuttiyiel, K. A., Sasaki, K., Choi, Y. M., Su, D., Liu, P., and Adzic, R. R., "Nitride Stabilized PtNi Core-Shell Nanocatalyst for High Oxygen Reduction Activity," Nano Lett., 12(12), 6266-6271 (2012). https://doi.org/10.1021/nl303362s
- Song, L., Cai, Y., Liu, Y., Zhao, X., Kuttiyiel, K. A., Marinkovic, N., Frenkel, A. I., Kongkanand, A., Choi, Y. M., Adzic, R. R., and Sasaki, K., "One-Step Facile Synthesis of High-Activity Nitrogen-Doped PtNiN Oxygen Reduction Catalyst," ACS Appl. Energy Mater., 5(4), 5245-5255 (2022). https://doi.org/10.1021/acsaem.2c00631
- Jin, H., Xu, Z., Hu, Z. Y., Yin, Z., Wang, Z., Deng, Z., Wei, P., Feng, S., Dong, S., Liu, J., Luo, S., Qiu, Z., Zhou, L., Mai, L., Su, B. L., Zhao, D., and Liu, Y., "Mesoporous Pt@Pt-skin Pt3Ni Core-Shell Framework Nanowire Electrocatalyst for Efficient Oxygen Reduction," Nat. Commun., 14(1), 1518 (2023).
- Hu, S., Wang, Z., Chen, H., Wang, S., Li, X., Zhang, X., and Shen, P. K., "Ultrathin PtCo Nanorod Assemblies with Self-Optimized Surface for Oxygen Reduction Reaction," J. Electroanal. Chem., 870, 114194 (2020).
- Li, Z., Zeng, R., Wanga, L., Jiang, L., Wang, S., and Liu, X., "A Simple Strategy to form Hollow Pt3Co Alloy Nanosphere with Ultrathin Pt Shell with Significant Enhanced Oxygen Reduction Reaction Activity," Int. J. Hydrogen Energy, 41(46), 21394-21403 (2016). https://doi.org/10.1016/j.ijhydene.2016.08.124
- Lai, W. H., Zhang, B. W., Hu, Z., Qu, X. M., Jiang, Y. X., Wang, Y. X., Wang, J. Z., Liu, H. K., and Chou, S. L., "The Quasi-Pt-Allotrope Catalyst: Hollow PtCo@single-atom Pt1 on Nitrogen-Doped Carbon Toward Superior Oxygen Reduction," Adv. Funct. Mater., 29(13), 1807340 (2019).
- Jung, J. Y., Kim, D., Jang, I., Kim, N. D., Yoo, S. J., and Kim, P., "Synthesis of Hollow Structured PtNi/Pt Core/Shell and Pt-Only Nanoparticles via Galvanic Displacement and Selective Etching for Efficient Oxygen Reduction Reaction," JIEC, 111, 300-307 (2022). https://doi.org/10.1016/j.jiec.2022.04.011
- Gruzel, G., Arabasz, S., Pawlyta, M., and Parlinska-Wojtan, M., "Conversion of Bimetallic PtNi3 Nanopolyhedra to Ternary PtNiSn Nanoframes by Galvanic Replacement Reaction," Nanoscale, 11(12) 5355-5364 (2019). https://doi.org/10.1039/C9NR01359H
- Kang, Y. S., Jung, J. Y., Choi, D., Sohn, Y., Lee, S. H., Lee, K. S., Kim, N. D., Kim, P., and Yoo, S. J., "Formation Mechanism and Gram-Scale Production of PtNi Hollow Nanoparticles for Oxygen Electrocatalysis through In Situ Galvanic Displacement Reaction," ACS Appl. Mater. Interfaces, 12(14), 16286-16297 (2020). https://doi.org/10.1021/acsami.9b22615
- Gong, L., Liu, J., Li, Y., Wang, X., Luo, E., Jin, Z., Ge, J., Liu, C., and Xing, W., "An Ultralow-Loading Platinum Alloy Efficient ORR Electrocatalyst Based on the Surface-Contracted Hollow Structure," J. Chem. Eng., 428, 131569 (2022).
- Park, H. Y., Park, J. H., Kim, P., and Yoo, S. J., "Hollow PdCu2@ Pt Core@shell Nanoparticles with Ordered Intermetallic Cores as Efficient and Durable Oxygen Reduction Reaction Electrocatalysts," Appl. Catal. B: Environ., 225(5), 84-90 (2018).
- Kwon, M. K., Jung, J. H., and Kim, J. B., "Improvement of Catalyst Supporting Characteristic on MWCNTs with Different Thermal Treatment for PEMFC," J. Korean Electrochem. Soc., 14(4), 245-252 (2011). https://doi.org/10.5229/JKES.2011.14.4.245
- Jeong, H. Y., Kim, D., Akpe, S. G., Paidi, V. K., Park, H. S., Lee, S. H., Lee, K. S., Ham, H. C., Kim, P., and Yoo, S. J., "Hydrogen-Mediated Thin Pt Layer Formation on Ni3N Nanoparticles for the Oxygen Reduction Reaction," ACS Appl. Mater. Interfaces, 13(21), 24624-24633 (2021). https://doi.org/10.1021/acsami.1c01544
- Nie, Y., Deng, J., Jin, W., Guo, W., Wu, G., Deng, M., Zhou, J., Yang, R., Zhang, S., and Wei, Z., "Engineering Multi-Hollow PtCo Nanoparticles for Oxygen Reduction Reaction via a NaCl-Sealed Annealing Strategy," J. Alloys Compd., 884, 161063 (2021).
- Byeon, J. H., Park, D. H., Lee, W. J., Kim, M. H., Lee, H. J., and Park, K. W., "Kirkendall Effect-Driven Formation of Hollow PtNi Alloy Nanostructures with Enhanced Oxygen Reduction Reaction Performance," J. Power Sources, 556, 232483 (2023).
- Son, M. and Ryu, J., "Recent Research Trends of Supercapacitors for Energy Storage Systems," Clean Technol., 27(4), 277-890 (2021).