DOI QR코드

DOI QR Code

Nanostructure Control of PtNiN/C Catalysts for Oxygen Reduction Reaction by Regulating Displacement Rate of Precursor

전구체 치환 속도 조절을 통한 산소환원반응용 PtNiN/C 촉매의 나노구조 제어

  • Dong-gun Kim (Department of Chemical Engineering, Jeonbuk National University) ;
  • Seongseop Kim (Department of Chemical Engineering, Jeonbuk National University) ;
  • Sung Jong Yoo (Center for Hydrogen Fuel Cell Research, Korea Institute of Science and Technology (KIST)) ;
  • Pil Kim (Department of Chemical Engineering, Jeonbuk National University)
  • 김동건 (전북대학교 화학공학부) ;
  • 김성섭 (전북대학교 화학공학부) ;
  • 유성종 (한국과학기술연구원 연료전지 연구센터) ;
  • 김필 (전북대학교 화학공학부)
  • Received : 2024.01.22
  • Accepted : 2024.02.11
  • Published : 2024.03.31

Abstract

Efforts are actively underway to address the issues related to the high cost of Pt-based catalysts for oxygen reduction reactions by designing high-performance Pt-based alloys through the control of their nanostructures. In this study, a method was proposed to control the nanostructure of Pt-based alloys, either hollow or core-shell, by adjusting the pH of the solution during the galvanic replacement reaction between the carbon-supported nickel-nickel nitride composite and the Pt ions. The physical characteristics, including the state, quantity, and morphology of the metal particles under different preparation conditions, were evaluated through X-ray diffraction, transmission electron microscopy, and inductively coupled plasma. When the prepared catalysts were employed for the oxygen reduction reaction, they exhibited an improvement in area specific-activity compared to a commercial Pt/C, with a 1.7 and 1.9-fold enhancement for the hollow and core-shell structured catalysts, respectively.

연료전지의 산소환원반응용 백금 촉매의 높은 비용을 극복하기 위하여 나노 구조 제어를 통한 고성능의 백금 합금 촉매 개발 연구가 활발히 수행되고 있다. 본 연구에서는 탄소에 담지된 니켈-니켈 질화물 복합체와 백금 이온 간의 갈바닉 치환 반응 시 용액의 pH 조절을 통한 촉매의 나노구조를 중공형이나 코어-쉘 구조로 제어하는 방법을 제시하였다. X선 회절 분석과 투과전자현미경, 유도결합 플라즈마를 이용한 분석을 통해 합성 조건에 따른 금속의 상태와 함량 및 합금 입자의 형상에 대한 물리적 특성 평가를 수행하였다. 제조된 촉매를 산소환원반응 촉매로 적용하였으며 상용 백금 촉매 대비 1.7배(중공형 촉매) 및 1.9배(코어-쉘 구조 촉매) 개선된 전기화학적 활성 면적 당 활성을 나타내었다.

Keywords

Acknowledgement

본 과제는 2023년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다(2023RIS-008).

References

  1. Bing, Y., Liu, H., Zhang, L., Ghosh, D., and Zhang, J., "Nanostructured Pt-Alloy Electrocatalysts for PEM Fuel Cell Oxygen Reduction Reaction," Chem. Soc. Rev., 39(6), 2184-2202 (2010). https://doi.org/10.1039/b912552c
  2. Zou, L., Li,J., Yuan, T., Zhou, Y., Li, X., and Yang, H., "Structural Transformation of Carbon-Supported Pt3Cr Nanoparticles from a Disordered to an Ordered Phase as a Durable Oxygen Reduction Electrocatalyst," Nanoscale, 6(18), 10686-10692 (2014). https://doi.org/10.1039/C4NR02799J
  3. Liu, M., Zhao, Z., Duan, X., and Huang, Y., "Nanoscale Structure Design for High-Performance Pt-Based ORR Catalysts," Advanced Materials, 31(6), 1802234 (2019).
  4. Lu, X. F., Xia, B. Y., Zang, S. Q., and Lou, X. W., "Metal-Organic Frameworks Based Electrocatalysts for the Oxygen Reduction Reaction," Angewandte Chemie, 132(12), 4662-4678 (2020). https://doi.org/10.1002/ange.201910309
  5. Li, K., Li, X., Huang, H., Luo, L., Li, X., Yan, X., Ma, C., Si, R., Yang, J., and Zeng, J., "One-Nanometer-Thick PtNiRh Trimetallic Nanowires with Enhanced Oxygen Reduction Electrocatalysis in Acid Media: Integrating Multiple Advantagesinto One Catalyst," J. Am. Chem. Soc., 140(47), 16159-16167 (2018).
  6. Li, J., Sharma, S., Liu, X., Pan, Y. T., Spendelow, J. S., Chi, M., Jia, Y., Zhang, P., Cullen, D. A., Xi, Z., Lin, H., Yin, Z., Shen, B., Muzzio, M., Yu, C., Kim, Y. S., Peterson, A.A., More, K. L., Zhu, H., and Sun, S., "Hard-Magnet L10-CoPt Nanoparticles Advance Fuel Cell Catalysis," Joule, 3(1), 124-135 (2019). https://doi.org/10.1016/j.joule.2018.09.016
  7. Yang, W., Zou, L., Huang, Q., Zou, Z., Hu, Y., and Yang, H., "Lattice Contracted Ordered Intermetallic Core-Shell PtCo@ Pt Nanoparticles: Synthesis, Structure and Origin for Enhanced Oxygen Reduction Reaction," J. Electrochem. Soc., 164(6), H331-H337 (2017).
  8. Bu, L., Guo, S., Zhang, X., Shen, X., Su, D., Lu, G., Zhu, X.,Yao, J., Guo, J., and Huang, X., "Surface Engineering of Hierarchical Platinum-Cobalt Nanowires for Efficient Electrocatalysis," Nat. Commun., 7, 11850 (2016).
  9. Antolini, E., Salgado, J. R. C., and Gonzalez, E. R., "The Stability of Pt-M (M=First Row Transition Metal) Alloy Catalysts and its Effect on the Activity in Low Temperature Fuel Cells," J. Power Sources, 160(2), 957-968 (2006). https://doi.org/10.1016/j.jpowsour.2006.03.006
  10. Gong, M., Deng, Z., Xiao, D., Han, L., Zhao, T., Lu, Y., Shen, T., Liu, X., Lin, R., Huang, T., Zhou, G., Xin, H., andWang, D., "One-Nanometer-Thick Pt3Ni Bimetallic Alloy Nanowires Advanced Oxygen Reduction Reaction: Integrating Multiple Advantages into One Catalyst," ACS Catal., 9(5), 4488-4494 (2019).
  11. Kim, J. and Kim, Y., "Effect of Co-catalyst CeO2 on NOx Reduction in PtNi/W-TiO2 Catalysts for Low-temperature H2-SCR," Clean Technol., 29(4), 313-320 (2023).
  12. Kattel, S. and Wang, G., "Beneficial Compressive Strain for Oxygen Reduction Reaction on Pt (111) Surface," J. Chem. Phys., 141(12), 124713 (2014).
  13. Hyman, M. P. and Will Medlin, J., "Effects of Electronic Structure Modifications on the Adsorption of Oxygen Reduction Reaction Intermediates on Model Pt (111)-Alloy Surfaces," J. Phys. Chem. C, 111(45), 17052-17060 (2007). https://doi.org/10.1021/jp075108g
  14. Zhao, X., Xi, C., Zhang, R., Song, L., Wang, C., Spendelow, J. S., Frenkel, A. I., Yang, J., Xin, H. L., and Sasaki, K., "High-Performance Nitrogen-Doped Intermetallic PtNi Catalyst for the Oxygen Reduction Reaction," ACS Catal., 10(18), 10637-10645 (2020). https://doi.org/10.1021/acscatal.0c03036
  15. Kuttiyiel, K. A., Sasaki, K., Choi, Y. M., Su, D., Liu, P., and Adzic, R. R., "Nitride Stabilized PtNi Core-Shell Nanocatalyst for High Oxygen Reduction Activity," Nano Lett., 12(12), 6266-6271 (2012). https://doi.org/10.1021/nl303362s
  16. Song, L., Cai, Y., Liu, Y., Zhao, X., Kuttiyiel, K. A., Marinkovic, N., Frenkel, A. I., Kongkanand, A., Choi, Y. M., Adzic, R. R., and Sasaki, K., "One-Step Facile Synthesis of High-Activity Nitrogen-Doped PtNiN Oxygen Reduction Catalyst," ACS Appl. Energy Mater., 5(4), 5245-5255 (2022). https://doi.org/10.1021/acsaem.2c00631
  17. Jin, H., Xu, Z., Hu, Z. Y., Yin, Z., Wang, Z., Deng, Z., Wei, P., Feng, S., Dong, S., Liu, J., Luo, S., Qiu, Z., Zhou, L., Mai, L., Su, B. L., Zhao, D., and Liu, Y., "Mesoporous Pt@Pt-skin Pt3Ni Core-Shell Framework Nanowire Electrocatalyst for Efficient Oxygen Reduction," Nat. Commun., 14(1), 1518 (2023).
  18. Hu, S., Wang, Z., Chen, H., Wang, S., Li, X., Zhang, X., and Shen, P. K., "Ultrathin PtCo Nanorod Assemblies with Self-Optimized Surface for Oxygen Reduction Reaction," J. Electroanal. Chem., 870, 114194 (2020).
  19. Li, Z., Zeng, R., Wanga, L., Jiang, L., Wang, S., and Liu, X., "A Simple Strategy to form Hollow Pt3Co Alloy Nanosphere with Ultrathin Pt Shell with Significant Enhanced Oxygen Reduction Reaction Activity," Int. J. Hydrogen Energy, 41(46), 21394-21403 (2016). https://doi.org/10.1016/j.ijhydene.2016.08.124
  20. Lai, W. H., Zhang, B. W., Hu, Z., Qu, X. M., Jiang, Y. X., Wang, Y. X., Wang, J. Z., Liu, H. K., and Chou, S. L., "The Quasi-Pt-Allotrope Catalyst: Hollow PtCo@single-atom Pt1 on Nitrogen-Doped Carbon Toward Superior Oxygen Reduction," Adv. Funct. Mater., 29(13), 1807340 (2019).
  21. Jung, J. Y., Kim, D., Jang, I., Kim, N. D., Yoo, S. J., and Kim, P., "Synthesis of Hollow Structured PtNi/Pt Core/Shell and Pt-Only Nanoparticles via Galvanic Displacement and Selective Etching for Efficient Oxygen Reduction Reaction," JIEC, 111, 300-307 (2022). https://doi.org/10.1016/j.jiec.2022.04.011
  22. Gruzel, G., Arabasz, S., Pawlyta, M., and Parlinska-Wojtan, M., "Conversion of Bimetallic PtNi3 Nanopolyhedra to Ternary PtNiSn Nanoframes by Galvanic Replacement Reaction," Nanoscale, 11(12) 5355-5364 (2019). https://doi.org/10.1039/C9NR01359H
  23. Kang, Y. S., Jung, J. Y., Choi, D., Sohn, Y., Lee, S. H., Lee, K. S., Kim, N. D., Kim, P., and Yoo, S. J., "Formation Mechanism and Gram-Scale Production of PtNi Hollow Nanoparticles for Oxygen Electrocatalysis through In Situ Galvanic Displacement Reaction," ACS Appl. Mater. Interfaces, 12(14), 16286-16297 (2020). https://doi.org/10.1021/acsami.9b22615
  24. Gong, L., Liu, J., Li, Y., Wang, X., Luo, E., Jin, Z., Ge, J., Liu, C., and Xing, W., "An Ultralow-Loading Platinum Alloy Efficient ORR Electrocatalyst Based on the Surface-Contracted Hollow Structure," J. Chem. Eng., 428, 131569 (2022).
  25. Park, H. Y., Park, J. H., Kim, P., and Yoo, S. J., "Hollow PdCu2@ Pt Core@shell Nanoparticles with Ordered Intermetallic Cores as Efficient and Durable Oxygen Reduction Reaction Electrocatalysts," Appl. Catal. B: Environ., 225(5), 84-90 (2018).
  26. Kwon, M. K., Jung, J. H., and Kim, J. B., "Improvement of Catalyst Supporting Characteristic on MWCNTs with Different Thermal Treatment for PEMFC," J. Korean Electrochem. Soc., 14(4), 245-252 (2011). https://doi.org/10.5229/JKES.2011.14.4.245
  27. Jeong, H. Y., Kim, D., Akpe, S. G., Paidi, V. K., Park, H. S., Lee, S. H., Lee, K. S., Ham, H. C., Kim, P., and Yoo, S. J., "Hydrogen-Mediated Thin Pt Layer Formation on Ni3N Nanoparticles for the Oxygen Reduction Reaction," ACS Appl. Mater. Interfaces, 13(21), 24624-24633 (2021). https://doi.org/10.1021/acsami.1c01544
  28. Nie, Y., Deng, J., Jin, W., Guo, W., Wu, G., Deng, M., Zhou, J., Yang, R., Zhang, S., and Wei, Z., "Engineering Multi-Hollow PtCo Nanoparticles for Oxygen Reduction Reaction via a NaCl-Sealed Annealing Strategy," J. Alloys Compd., 884, 161063 (2021).
  29. Byeon, J. H., Park, D. H., Lee, W. J., Kim, M. H., Lee, H. J., and Park, K. W., "Kirkendall Effect-Driven Formation of Hollow PtNi Alloy Nanostructures with Enhanced Oxygen Reduction Reaction Performance," J. Power Sources, 556, 232483 (2023).
  30. Son, M. and Ryu, J., "Recent Research Trends of Supercapacitors for Energy Storage Systems," Clean Technol., 27(4), 277-890 (2021).