DOI QR코드

DOI QR Code

폐리튬인산철 양극재로부터 리튬의 선침출 및 인과 철의 개별적 분리 회수 연구

Pre-leaching of Lithium and Individual Separation/Recovery of Phosphorus and Iron from Waste Lithium Iron Phosphate Cathode Materials

  • 김희선 (고등기술연구원 신소재공정센터) ;
  • 김보람 (고등기술연구원 신소재공정센터) ;
  • 김대원 (고등기술연구원 신소재공정센터)
  • Hee-Seon Kim (Advanced Materials and Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Boram Kim (Advanced Materials and Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Dae-Weon Kim (Advanced Materials and Processing Center, Institute for Advanced Engineering (IAE))
  • 투고 : 2024.02.23
  • 심사 : 2024.03.05
  • 발행 : 2024.03.31

초록

전기차의 수요가 증가함에 따라 리튬이온전지의 시장 또한 급증하고 있다. 리튬이온전지의 배터리 수명은 제한되어 있으며, 수명을 다한 배터리의 교체 필연적이므로 폐리튬이온전지 배터리가 발생하게 된다. 이에 리튬이온전지 중 폐리튬인산철(LiFePO4, 이하 LFP라고 함) 양극재 분말에서부터 리튬은 선택적으로 선침출하고 인산철(FePO4) 분말을 회수하였다. 회수된 인산철 분말은 탄산나트륨(Na2CO3) 분말과 혼합하여 열처리하여 그 결정상을 확인하였다. 열처리 온도를 변수로 하였고, 이후 증류수를 이용하여 수침출 후 각 성분의 침출률 및 분말 특성을 비교하였다. 본 연구에서 리튬은 약 100% 침출률을 보였고 800 ℃에서 열처리한 분말의 경우 인이 약 99% 침출되었으며, 침출 잔사는 Fe2O3 단일 결정상으로 확인되었다. 따라서 본 연구에서는 폐LFP 분말로부터 리튬, 인 그리고 철 성분을 개별적으로 분리 및 회수할 수 있었다.

As demand for electric vehicles increases, the market for lithium-ion batteries is also rapidly increasing. The battery life of lithium-ion batteries is limited, so waste lithium-ion batteries are inevitably generated. Accordingly, lithium was selectively preleached from waste lithium iron phosphate (LiFePO4, hereafter referred to as the LFP) cathode material powder among lithium ion batteries, and iron phosphate (FePO4) powder was recovered. The recovered iron phosphate powder was mixed with alkaline sodium carbonate (Na2CO3) powder and heat treated to confirm its crystalline phase. The heat treatment temperature was set as a variable, and then the leaching rate and powder characteristics of each ingredient were compared after water leaching using Di-water. In this study, lithium showed a leaching rate of approximately 100%, and in the case of powder heat-treated at 800 ℃, phosphorus was leached by approximately 99%, and the leaching residue was confirmed to be a single crystal phase of Fe2O3. Therefore, in this study, lithium, phosphorus, and iron components were individually separated and recovered from waste LFP powder.

키워드

과제정보

본 연구는 2023년도 산업통상자원부의 재원으로 한국에너지기술평가원의 지원을 받아 수행한 연구 과제입니다(재생자원의 저탄소 산업 원료화 기술개발 사업 No.20229A10100100).

참고문헌

  1. Velazquez-Martinez, O., Valio, J., Santasalo-Aarnio, A., Reuter, M., and Serna-Guerrero, R., "A Critical Review of LithiumIon Battery Recycling Processes from a Circular Economy Perspective," Batteries, 5(4), 68 (2019).
  2. Mohammadi, F., "Electric Vehicle Battery Market Analysis: Lithium-Ion. In Proceedings of the 1st International Conference on Modern Approaches in Engineering Science," Tbilisi, Georgia (2018).
  3. Islam, M. T. and Iyer-Raniga, U., "Lithium-Ion Battery Recycling in the Circular Economy: A Review," Recycling, 7(3), 33 (2022).
  4. Baum, Z. J., Bird, R. E., Yu, X., and Ma, J., "Lithium-Ion Battery Recycling-Overview of Techniques and Trends," ACS Energy Lett., 7(2), 712-719 (2022).
  5. Everett, J., Kammen, D., and Rowland, S., "Next Generation EV Batteries Eliminate the Need for Deep Sea Mining," Blue Climate Initiative (2023).
  6. Fan, Y., Kong, Y., Jiang, P., Zhang, G., Cong, J., Shi, X., Liu, Y., Zhang, P., Zhang, R., and Huang, Y., "Development and Challenges of Deep Eutectic Solvents for Cathode Recycling of End-Of-Life Lithium-Ion Batteries," Chem. Eng. J., 463, 142278 (2023).
  7. Wu, Y., Zhou, K., Zhang, X., Peng, C., Jiang, Y., and Chen, W., "Aluminum Separation by Sulfuric Acid Leaching-Solvent Extraction from Al-bearing LiFePO4/C Powder for Recycling of Fe/P," Waste Manage., 144, 303-312 (2022).
  8. Zhang, J., Li, X., Song, D., Miao, Y., Song, J., and Zhang, L., "Effective Regeneration of Anode Material Recycled from Scrapped Li-Ion Batteries," J. Power Sources, 390, 38-44 (2018).
  9. Wang, X., Wang, X., Zhang, R., Wang, Y., and Shu, H., "Hydrothermal Preparation and Performance of LiFePO4 by Using Li3PO4 Recovered from Spent Cathode Scraps as Li Source," Waste Manage., 78, 208-216 (2018).
  10. Or, T., Gourley, S. W. D., Kaliyappan, K., Yu, A., and Chen, Z., "Recycling of Mixed Cathode Lithium-Ion Batteries for Electric Vehicles: Current Status and Future Outlook," Carbon Energy, 2(1), 6-43 (2020).
  11. Larouche, F., Tedjar, F., Amouzegar, K., Houlachi, G., Bouchard, P., Demopoulos, G. P., and Zaghib, K., "Progress and Status of Hydrometallurgical and Direct Recycling of Li-Ion Batteries and Beyond," Materials, 13(3), 801 (2020).
  12. Lv, H., Huang, H., Huang, C., Gao, Q., Yang, Z., and Zhang, W., "Electric Field Driven De-Lithiation: A Strategy Towards Comprehensive and Efficient Recycling of Electrode Materials from Spent Lithium Ion Batteries," Appl. Catal. B: Environ., 283, 119634
  13. Kumar, J., Shen, X., Li, B., Liu, H., and Zhao, J., "Selective Recovery of Li and FePO4 from Spent LiFePO4 Cathode Scraps by Organic Acids and the Properties of the Regenerated LiFePO4," Waste Manage., 113, 32-40 (2020).
  14. Kim, J., Kim, Y., Oh, S. K., and Jeon, J.-K., "Analysis of Dry Process Products for Recycling of Spent Secondary Batteries," Clean Technol., 27(2), 139-145
  15. Kim, H. S., Kim, D. W., Jang, D. H., Kim, B. R., Jin, Y. H., Chae, B. M., and Lee, S. W., "A Study on the Leaching Effect and Selective Recovery of Lithium Element by Persulfate-Based Oxidizing Agents from Waste LiFePO4 Cathode," J. of Korean Inst. of Resources Recycling, 31(4), 40-48 (2022).
  16. Kim, D. W. and Kim, H. S., "Efficient Selective Recovery of Lithium from Waste LiFePO4 Cathode Materials Using Low Concentration Sulfuric Solution and 2-Step Leaching Method," Clean Technol., 29(2), 87-97 (2023).
  17. Kim, H. S., Kim, D. W., Cha, B. M., and Lee, S. W., "A Study on the Leaching and Recovery of Lithium by Reaction Between Ferric Chloride Etching Solution and Waste Lithium Iron Phosphate Cathode Powder,"J. of Korean Inst. of Resources Recycling, 32(3), 9-17 (2023).
  18. Singh, M., Singh, B., and Willert-Porada, M., "Reaction Mechanism and Morphology of the LiFePO4 Materials Synthesized by Chemical Solution Deposition and Solid-State Reaction," J. Electroanal. Chem., 790, 11-19 (2017).
  19. Duan, H., Meng, D., and Yuan, S., "Solution Combustion Synthesis of High-Performance Nano-LiFePO4/C Cathode Material from Cost-Effective Mixed Fuels," Materials, 16(22), 7155 (2023).
  20. Tang, H., Si, Y., Chang, K., Fu, X., Shangguan, E., Chang, Z., and Wang, H., "Carbon Gel Assisted Low Temperature Liquid-Phase Synthesis of C-LiFePO4/Graphene Layers with High Rate and Cycle Performances," J. Power Sources, 295, 131-138
  21. Zhao, C., Wang, L. N., Chen, J., and Gao, M., "Environmentally Benign and Scalable Synthesis of LiFePO4 Nanoplates with High Capacity and Excellent Rate Cycling Performance for Lithium Ion Batteries," Electrochim. Acta, 255, 266-273 (2017).
  22. Liu, R., Chen, J., Li, Z., Ding, Q., An, X., Pan, Y., and Fu, D., "Preparation of LiFePO4/C Cathode Materials via a Green Synthesis Route for Lithium-Ion Battery Applications," Materials, 11(11), 2251 (2018).
  23. Li, H., Xing, S., Liu, Y., Li, F., Guo, H., and Kuang, G., "Recovery of Lithium, Iron, and Phosphorus from Spent LiFePO4 Batteries Using Stoichiometric Sulfuric Acid Leaching System," ACS Sustain. Chem. Eng., 5(9), 8017-8024 (2017).
  24. Gong, R., Li, C., Meng, Q., Dong, P., Zhang, Y., Zhang, B., and Li, Y., "A Sustainable Closed-Loop Method of Selective Oxidation Leaching and Regeneration for Lithium Iron Phosphate Cathode Materials from Spent Batteries," J. Environ. Manag., 319, 115740 (2022).
  25. Wu, D. Y., Wang, D. X., Liu, Z. Q., Shuai, R. A. O., and Zhang, K. F., "Selective Recovery of Lithium from Spent Lithium Iron Phosphate Batteries Using Oxidation Pressure Sulfuric Acid Leaching System," Transactions of Nonferrous Metals Society of China, 32(6), 2071-2079 (2022).
  26. Zhang, Q., Fan, E., Lin, J., Sun, S., Zhang, X., Chen, R., and Li, L., "Acid-Free Mechanochemical Process to Enhance the Selective Recycling of Spent LiFePO4 Batteries," J. Hazard. Mater., 443, 130160 (2023).
  27. Liu, K., Tan, Q., Liu, L., and Li, J., "Acid-Free and Selective Extraction of Lithium from Spent Lithium Iron Phosphate Batteries via a Mechanochemically Induced Isomorphic Substitution," Environ. Sci. Technol., 53(16), 9781-9788 (2019).
  28. Wu, L., Zhang, F. S., Zhang, Z. Y., and Zhang, C. C., "An Environmentally Friendly Process for Selective Recovery of Lithium and Simultaneous Synthesis of LiFe5O8 from Spent LiFePO4 Battery by Mechanochemical," J. Clean. Prod., 396, 136504 (2023).
  29. Dong, J., He, H., He, Q., Zhang, D., and Chang, C., "Cost Effective and Eco-Friendly Synthesis of LiFePO4/C Cathode Material from a Natural Mineral Magnetite," J. Mater. Sci.: Materials in Electronics, 30, 17128-17136 (2019).
  30. Dong, B., Xu, Y., Lin, S., and Dai, X., "Characterizing and Exploring the Formation Mechanism of Salt Deposition by Reusing Advanced-Softened, Silica-Rich, Oilfield-Produced Water (ASOW) in Superheated Steam Pipeline," Sci. Rep., 5(1), 17274 (2015). 
  31. Gnanavel, M., Patel, M. U., Sood, A. K., and Bhattacharyya, A. J., "High Rate Capability Lithium Iron Phosphate Wired by Carbon Nanotubes and Galvanostatic Transformed to Graphitic Carbon," J. Electrochem. Soc., 159(4), A336 (2012).
  32. Hong, Y. S., Ryu, K. S., Park, Y. J., Kim, M. G., Lee, J. M., and Chang, S. H., "Amorphous FePO44 as 3V Cathode Material for Lithium Secondary Batteries," J. Mater. Chem., 12(6), 1870-1874 (2002).
  33. Windisch-Kern, S., Holzer, A., Ponak, C., Hochsteiner, T., and Raupenstrauch, H., "Thermal Analysis of Lithium Ion Battery Cathode Materials for the Development of a Novel Pyrometallurgical Recycling Approach," Carbon Resour. Conver., 4, 184-189 (2021).