DOI QR코드

DOI QR Code

Development of Bismuth Alloy-Based Anode Material for Lithium-Ion Battery

리튬이온 전지용 Bismuth 합금 기반 음극재 개발

  • Chi Rong Sun (Department of Mechanical Engineering, Sung Kyun Kwang University) ;
  • Jae Hoon Kim (Department of Mechanical Engineering, Sung Kyun Kwang University)
  • 손계영 (성균관대학교 기계공학과) ;
  • 김재훈 (성균관대학교 기계공학과)
  • Received : 2024.02.29
  • Accepted : 2024.03.10
  • Published : 2024.03.31

Abstract

Bismuth is a promising anodic for Li-ion batteries (LIBs) due to its adequate operating voltage and high-volume capacity (3,765 mAh cm-3). Nevertheless, inevitable volume expansion during Bi alloy reactions leads to severe capacity loss and cell destruction. To address this, a complex of bismuth alloy nanoparticles (Bi@NC) embedded in an N doping-carbon coating is fabricated via a simple pyrolysis method. Nano-sized bismuth alloys can improve the reaction dynamics through a shortened Li+-ion diffusion path. In addition, the N-doped carbon coating effectively buffers the volume change of bismuth during the extended alloy/dealloy reaction with Li+ ions and maintains an effective conductive network. Based on the Thermogravimetric analysis (TGA) showed high bismuth alloy loading (80.9 wt%) and maintained a high gravimetric capacity of 315 mAh g-1 up to 100 cycles with high volumetric capacity of 845.6 mAh cm-3.

Bismuth는 적절한 작동 전압(0.8 V)과 높은 체적 용량(3,765 mAh cm-3) 때문에 Li-ion battery (LIBs)의 유망한 음극소재로 여겨진다. 그럼에도 불구하고 Bi의 Li과의 합금화 반응 중 필연적인 부피 팽창은 심각한 용량 손실과 셀 파괴를 초래한다. 이를 해결하기 위해 본 논문에서는 N이 도핑된 탄소에 내장된 비스무트 합금 나노 입자(Bi@NC)의 복합체를 간단한 열분해 방법을 통해 제조하였다. 나노 크기의 Bismuth 합금은 단축된 Li+ 이온 확산 경로를 통해 반응 동역학을 향상시킬 수 있다. 또한, N 도핑된 탄소 코팅은 Li+ 이온과의 확장된 합금/탈 합금 반응 동안 Bismuth의 부피 변화를 효과적으로 완충하고 효과적인 전도성 네트워크를 유지한다. 열 중량 분석한 결과 매우 높은 Bismuth 합금 로딩(80.9 wt%)을 보여줬음에도 불구하고 100 cycles까지 315 mAh g-1 용량을 유지하였다.

Keywords

References

  1. Gur, T. M., "Review of Electrical Energy Storage Technologies, Materials and Systems: Challenges and Prospects for Large-Scale Grid Storage," Energy Environ. Sci., 11, 2696-2767 (2018).
  2. Li, M., Lu, J., Chen, Z., and Amine, K., "30 Years of Lithium Ion Batteries," Adv. Mater., 30, 1800561 (2018).
  3. Nitta, N., Wu, F., Lee, J. T., and Yushin, G., "Li-Ion Battery Materials: Present and Future," Mater. Today, 18, 252-264 (2015).
  4. Scrosati, B., Hassoun, J., and Sun, Y.-K., "Lithium-Ion Batteries. A Look into the Future," Energy Environ. Sci., 4, 3287-3295 (2011).
  5. Liang, S., Cheng, Y. J., Zhu, J., Xia, Y., and Muller-Buschbaum, P., "A Chronicle Review of Nonsilicon (Sn, Sb, Ge)-Based Lithium/Sodium-Ion Battery Alloying Anodes," Small Methods, 4, 2000218 (2020).
  6. Park, C.-M., Kim, J.-H., Kim, H., and Sohn, H.-J., "Li-Alloy Based Anode Materials for Li Secondary Batteries," Chem. Soc. Rev., 39, 3115-3141 (2010).
  7. Dai, R., Wang, Y., Da, P., Wu, H., Xu, M., and Zheng, G., "Indirect Growth of Mesoporous Bi@C Core-Shell Nanowires for Enhanced Lithium-Ion Storage," Nanoscale, 6, 13236-13241 (2014).
  8. Hong, W., Wang, A., Li, L., Qiu, T., Li, J., Jiang, Y., Zou, G., Peng, H., Hou, H., and Ji, X., "Bi Dots Confined by Functional Carbon as High-Performance Anode for Lithium Ion Batteries," Adv. Funct. Mater., 31, 2000756 (2021).
  9. Zhang, S., "Chemomechanical Modeling of Lithiation-Induced Failure in High-Volume-Change Electrode Materials for Lithium Ion Batteries," NPJ Comput. Mater., 3, 1-11 (2017).
  10. Jin, Y., Zhu, B., Lu, Z., Liu, N., and Zhu, J., "Challenges and Recent Progress in the Development of Si Anodes for Lithium-Ion Battery," Adv. Energy Mater., 7, 1700715 (2017).
  11. Xue, P., Wang, N., Fang, Z., Lu, Z., Xu, X., Wang, L., Du, Y., Ren, X., Bai, Z., and Dou, S., "Rayleigh-Instability-Induced Bismuth Nanoroad@ Nitrogen-Doped Carbon Nanotubes as a Long Cycling and High Rate Anode for Sodium-Ion Batteries," Nano Lett., 19, 1998-2004 (2019).
  12. Liu, X., Wu, Y., Yang, Z., Pan, F., Zhong, X., Wang, J., Gu, L., and Yu, Y., "Nitrogen-Doped 3D Microporous Graphene Frameworks as Anode for High Performance Lithium-Ion Batteries," J. Power Sources, 293, 799-805 (2015).
  13. Dharmadhikari, V. S., Sainkar, S., Badrinarayan, S., and Goswami, A., "Characterisation of Thin Films of Bismuth Oxide by X-ray Photoelectron Spectroscopy," J. Electron Spectrosc. Relat. Phenom., 25, 181-189 (1982).
  14. Szubka, M., Talik, E., Sadecka, K., Pawlak, D. A., Zajdel, P., and Guzik, A., "Characterization of Raw Materials and Self-Organized Bi2O3-Ag Eutectic by X-ray Diffraction, Scanning Electron Microscopy, and X-ray Photoelectron Spectroscopy," Cryst. Res. Technol., 52, 1700044 (2017).