DOI QR코드

DOI QR Code

Development and application of cellular automata-based urban inundation and water cycle model CAW

셀룰러 오토마타 기반 도시침수 및 물순환 해석 모형 CAW의 개발 및 적용

  • Lee, Songhee (Department of Civil Engineering, Kumoh National Institute of Technology) ;
  • Choi, Hyeonjin (Department of Civil Engineering, Kumoh National Institute of Technology) ;
  • Woo, Hyuna (Department of Civil Engineering, Kumoh National Institute of Technology) ;
  • Kim, Minyoung (Department of Civil Engineering, Kumoh National Institute of Technology) ;
  • Lee, Eunhyung (Geum-River Environment Research Center, National Institute of Environmental Research) ;
  • Kim, Sanghyun (Department of Environmental Engineering, Pusan National University) ;
  • Noh, Seong Jin (Department of Civil Engineering, Kumoh National Institute of Technology)
  • 이송희 (금오공과대학교 토목공학과) ;
  • 최현진 (금오공과대학교 토목공학과) ;
  • 우현아 (금오공과대학교 토목공학과) ;
  • 김민영 (금오공과대학교 토목공학과) ;
  • 이은형 (국립환경과학원 금강물환경연구소) ;
  • 김상현 (부산대학교 환경공학과) ;
  • 노성진 (금오공과대학교 토목공학과)
  • Received : 2024.01.16
  • Accepted : 2024.02.23
  • Published : 2024.03.31

Abstract

It is crucial to have a comprehensive understanding of inundation and water cycle in urban areas for mitigating flood risks and sustainable water resources management. In this study, we developed a Cellular Automata-based integrated Water cycle model (CAW). A comparative analysis with physics-based and conventional cellular automata-based models was performed in an urban watershed in Portland, USA, to evaluate the adequacy of spatiotemporal inundation simulation in the context of a high-resolution setup. A high similarity was found in the maximum inundation maps by CAW and Weighted Cellular Automata 2 Dimension (WCA2D) model presumably due to the same diffuse wave assumption, showing an average Root-Mean-Square-Error (RMSE) value of 1.3 cm and high scores of binary pattern indices (HR 0.91, FAR 0.02, CSI 0.90). Furthermore, through multiple simulation experiments estimating the effects of land cover and soil conditions on inundation and infiltration, as the impermeability rate increased by 41%, the infiltration decreased by 54% (4.16 mm/m2) while the maximum inundation depth increased by 10% (2.19 mm/m2). It was expected that high-resolution integrated inundation and water cycle analysis considering various land cover and soil conditions in urban areas would be feasible using CAW.

도시 지역의 홍수 위험을 완화하고 지속 가능한 수자원을 관리하기 위해서는 도시 홍수와 물순환의 연계 해석이 필수적이다. 본 연구는 간단한 전환 규칙을 통해 침수의 시공간적 변화를 모의하는 셀룰러 오토마타 기법을 이용하여 고해상도 도시침수 및 물순환 해석 모형 CAW (Cellular Automata-based integrated Water cycle model)를 개발하고, 그 적용성을 평가하였다. 개발된 모형을 미국 포틀랜드 도심지 유역에 적용하고, 물리 기반 모형 및 기존 셀룰러 오토마타 기반 모형의 침수 해석 결과와 비교하여 도시침수 재현의 적절성을 평가하였다. 연구 결과, 침수 검증 대상 지점에 대한 CAW 모형의 최대 침수심 분포는 확산파 방정식을 모사하는 WCA2D (Weighted Cellular Automata 2 Dimension) 모형과 평균오차 값이 1.3 cm로 유사하게 모의되었고, 이진 패턴 유사도 검증에서 HR 0.91, FAR 0.02, CSI 0.90으로 비교적 높은 유사성을 나타내며 모형의 침수 해석 적용성을 검증하였다. 또한, 토지피복 및 토양 조건이 침수, 침투에 미치는 영향을 시험 평가한 결과, 불투수율이 41% 더 높은 지역에서의 침투와 최대 침수심이 각각 54%(4.16 mm/m2) 감소 및 10%(2.19 mm/m2) 증가하였다. CAW 모형을 이용하여 도시 유역의 다양한 토지피복 및 토양 특성을 고려한 고해상도 물순환 및 도시침수 연계 모의 해석이 가능할 것으로 기대된다.

Keywords

Acknowledgement

이 연구는 국립금오공과대학교 학술연구비로 지원되었음(202103770001).

References

  1. Aston, A.R. (1979). "Rainfall interception by eight small trees." Journal of Hydrology, Elsevier, Vol. 42, No. 3, pp. 383-396.
  2. Brasiel, H.C., and Lima, D.A. (2023). "Exploring the influence of wind, vegetation and water sources on the spread of forest fires in the Brazilian Cerrado biome using cellular automata." Proceedings of the 14th Workshop of Applied Computing for the Management of the Environment and Natural Resources (WCAMA), SBC, Porto Alegre, RS, Brasil, pp. 61-70.
  3. Choi, H., Lee, S., Woo, H., and Noh, S.J. (2023). "High-resolution urban flood modeling using cellular automata-based WCA2D in the Oncheon-cheon catchment in Busan, South Korea." KSCE Journal of Civil and Environmental Engineering Research, KSCE, Vol. 43, No. 5, pp. 587-599.
  4. Cooley, A., and Chang, H. (2017). "Precipitation intensity trend detection using hourly and daily observations in Portland, Oregon" Climate, MDPI, Vol. 5, No. 1, 10.
  5. Furnari, L., De Rango, A., Senatore, A., and Mendicino, G. (2024). "HydroCAL: A novel integrated surface-subsurface hydrological model based on the cellular automata paradigm." Advances in Water Resources, Vol. 185, 104623.
  6. Ghimire, B., Chen, A.S., Guidolin, M., Keedwell, E.C., Djordjevic, S., and Savic, D.A. (2013). "Formulation of a fast 2D urban pluvial flood model using a cellular automata approach." Journal of Hydroinformatics, IWA, Vol. 15, No. 3, pp. 676-686.
  7. Guidolin, M., Chen, A.S., Ghimire, B., Keedwell, E.C., Djordjevic, S., and Savic, D.A. (2016). "A weighted cellular automata 2D inundation model for rapid flood analysis." Environmental Modelling & Software, Elsevier, Vol. 84, pp. 378-394.
  8. Guidolin, M., Duncan, A., Ghimire, B., Gibson, M., Keedwell, E., Chen, A.S., Djordjevic, S., and Savic, D. (2012). "CADDIES: A new framework for rapid development of parallel cellular automata algorithms for flood simulation." Proceedings the 10th International Conference on Hydroinformatics (HIC 2012), Hamburg, Germany.
  9. Jamali, B., Bach, P.M., Cunningham, L., and Deletic, A. (2019). "A cellular automata fast flood evaluation (CA-ffe) model." Water Resources Research, Vol. 55, No. 6, pp. 4936-4953.
  10. Jang, C.H., Kim, D.H., and Kim, H.J. (2019). "Development of Dynamic Water resources Assessment Tool (DWAT)." Proceedings KSCE 2019 Convention, p. 297.
  11. Jasour, Z.Y., Reilly, A.C., Tonn, G.L., and Ferreira, C.M. (2022). "Roadway flooding as a bellwether for household retreat in rural, coastal regions vulnerable to sea-level rise." Climate Risk Management, Elsevier, Vol. 36, 100425.
  12. Kassogue, H., Bernoussi, A.S., Amharref, M., and Ouardouz, M. (2017). "Cellular automata approach for modelling climate change impact on water resources." International Journal of Parallel, Emergent and Distributed Systems, Vol. 34, No. 1, pp. 21-36.
  13. Kawaike, K. (2002). Study on flood analysis method in urban area and its application to water resistance evaluation. Ph. D. dissertation, University of Kyoto, Kyoto, Japanese.
  14. Kim, B., Noh, S.J., and Lee, S. (2022). "Retrospective analysis of the urban inundation and the impact assessment of the flood barrier using H12 model." Journal of Korea Water Resources Association, KWRA, Vol. 55, No. 5, pp. 345-356. https://doi.org/10.3741/JKWRA.2022.55.5.345
  15. Kim, H.J., Jang, C.H., and Noh, S.J. (2012). "Development and application of the catchment hydrologic cycle assessment tool considering urbanization (I) - Model development -." Journal of Korea Water Resources Association, KWRA, Vol. 45, No. 2, pp. 203-215.
  16. Lee, S. (2024). Development of cellular automata-based urban inundation and water cycle analysis model. Master Thesis, Kumoh National Institute of Technology.
  17. Lee, S., Nakagawa, H., Kawaike, K., and Zhang, H. (2012). "Study on Inlet Discharge coefficient through the different shapes of storm drains for urban inundation analysis." Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), JSCE, Vol. 68, No. 4, pp. 31-36.
  18. Lee, S., Nakagawa, H., Kawaike, K., and Zhang, H. (2013). "Experimental validation of interaction model at storm drain for development of integrated urban inundation model." Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), JSCE, Vol. 69, No. 4, pp. 109-114.
  19. Lee, S., Noh, S.J., Jang, C., and Rhee, D.S. (2017). "Simulation and analysis of urban inundation using the integrated 1D-2D urban flood model." Journal of Korea Water Resources Association, KWRA, Vol. 50, No. 4, pp. 263-275. https://doi.org/10.3741/JKWRA.2017.50.4.263
  20. Lee, S.J., Kim, Y.O., Lee, S.H., and Lee K.S. (2005). "Water cycle simulation for the Dorimcheon CatchmentUsing WEP model." Journal of Korea Water Resources Association, KWRA, Vol. 38, No. 6, pp. 449-460. https://doi.org/10.3741/JKWRA.2005.38.6.449
  21. Lee, W.H., Lee, J.H., Park, J.H., and Choi, H.S. (2016a). "The relationship between parameters of the SWAT model and the geomorphological characteristics of a watershed." Ecology and Resilient Infrastructure, KSEIE, Vol. 3, No. 1, pp. 35-45.
  22. Lee, Y.G., Cho, Y.H., and Kim, S.J. (2016b). "Prediction of land-use change based on urban growth scenario in South Korea using CLUE-s model" Journal of the Korean Association of Geographic Information Studies, KAGIS, Vol. 19, No. 3, pp. 75-88. https://doi.org/10.11108/KAGIS.2016.19.3.075
  23. Liu, L., Liu, Y., Wang, X., Yu, D., Liu, K., Huang, H., and Hu, G. (2015). "Developing an effective 2-D urban flood inundation model for city emergency management based on cellular automata." Natural Hazards and Earth System Sciences, Vol. 15, No. 3, pp. 381-391.
  24. Noh, S.J., Kim, H.J., Jang, C.H., and Lee, Y.J. (2009). "Development of hydrologic components of CAT (Catchment hydrologic cycle Assessment Tool)." Proceedings of the Korea Water Resources Association Conference, KWRA, pp. 159-163.
  25. Noh, S.J., Lee, J.-H., Lee, S., and Seo, D.-J. (2019). "Retrospective dynamic inundation mapping of Hurricane Harvey flooding in the Houston metropolitan area using high-resolution modeling and high-performance computing." Water, Vol. 11, No. 3, 597.
  26. Noh, S.J., Lee, J.H., Lee, S., Kawaike, K., and Seo, D.J. (2018). "Hyper-resolution 1D-2D urban flood modelling using LiDAR data and hybrid parallelization." Environmental Modelling & Software, Vol. 103, pp. 131-145.
  27. Noh, S.J., Lee, S., An, H., Kawaike, K., and Nakagawa, H. (2016). "Ensemble urban flood simulation in comparison with laboratory-scale experiments: Impact of interaction models for manhole, sewer pipe, and surface flow." Advances in Water Resources, Elsevier, Vol. 97, pp. 25-37.
  28. Shao, Q., Weatherley, D., Huang, L., and Baumgartl, T. (2015). "RunCA: A cellular automata model for simulating surface runoff at different scales" Journal of Hydrology, Elsevier, Vol. 529, No. 3, pp. 816-829.
  29. Von Hoyningen-Huene, J. (1983). Die interzeption des Niederschlages in landwirtschaftlichen Pflanzenbestanden. Report 57, Deutscher Verband fur Wasserwirtschaft und Kulturbau, Hamburg, Berlin, pp. 1-66.
  30. Wijaya, O.T., and Yang, T.H. (2021). "A novel hybrid approach based on cellular automata and a digital elevation model for rapid flood assessment." Water, MDPI, Vol. 13, No. 9, 1311.
  31. Wing, O.E., Bates, P.D., Sampson, C.C., Smith, A.M., Johnson, K.A., and Erickson, T.A. (2017). "Validation of a 30 m resolution flood hazard model of the conterminous United States." Water Resources Research, Vol. 53, No. 9, pp. 7968-7986.
  32. Yoon, D., and Koh, J.H. (2012). "A study on analysis of landslide disaster area using cellular Automata: An application to Umyeonsan, Seocho-Gu, Seoul, Korea." Spatial Information Research, KSIS, Vol. 20, No. 1, pp. 9-18.
  33. Yu, D., and Lane, S.N. (2006). "Urban fluvial flood modelling using a two-dimensional diffusion-wave treatment, part 2: development of a sub-grid-scale treatment." Hydrological Processes, Vol. 20, No. 7, pp. 1567-1583.
  34. Yu, D., and Lane, S.N. (2011). "Interactions between subgrid-scale resolution, feature representation and grid-scale resolution in flood inundation modelling." Hydrological Processes, Vol. 25, No. 1, pp. 36-53.