참고문헌
- Abbasnia, A., Jafari, M. and Rohani, A. (2021), "A novel method for estimation of stress concentration factor of central cutouts located in orthotropic plate", J. Brazil. Soc. Mech. Sci. Eng., 43, 348. https://doi.org/10.1007/s40430-021-03061-x.
- Abdelrahman, W.G. (2020), "Effect of material transverse distribution profile on buckling of thick functionally graded material plates according to TSDT", Struct. Eng. Mech., 74, 83-90. https://doi.org/10.12989/sem.2020.74.1.083.
- Abrate, S. (2006), "Free vibration, buckling, and static deflections of functionally graded plates", Compos. Sci. Technol., 66, 2383-2394. https://doi.org/10.1016/j.compscitech.2006.02.032.
- Akavci, S.S. and Tanrikulu, A.H. (2015), "Static and free vibration analysis of functionally graded plates based on a new quasi-3D and 2D shear deformation theories", Compos. B. Eng., 83, 203-215. https://doi.org/10.1016/j.compositesb.2015.08.043.
- Asemi, K., Salehi, M. and Sadighi, M. (2014), "Three dimensional static and dynamic analysis of two dimensional functionally graded annular sector plates", Struct. Eng. Mech., 51, 1067-1089. https://doi.org/10.12989/sem.2014.51.6.1067.
- Auad, S.P., Praciano, J.S.C., Barroso, E.S., Sousa Jr, J.B.M. and Parente Jr, E. (2019), "Isogeometric analysis of FGM plates", Mater. Today: Proc., 8, 738-746. https://doi.org/10.1016/j.matpr.2019.02.015.
- Balaraman, P., Stephen Joseph Raj, V. and Sreehari, V.M. (2022), "Static and dynamic analysis of re-entry vehicle nose structures made of different functionally graded materials", Aerosp., 9, 812. https://doi.org/10.3390/aerospace9120812.
- Behera, R.K., Patro, S.S. and Kishore Joshi, K. (2019), "Stability analysis of stiffened FG sandwich plates based on FEA", Mater. Today: Proc., 18, 3507-3513. https://doi.org/10.1016/j.matpr.2019.07.279.
- BeikMohammadlou, H. and EkhteraeiToussi, H. (2017), "Parametric studies on elastoplastic buckling of rectangular FGM thin plates", Aerosp. Sci. Technol., 69, 513-525. https://doi.org/10.1016/j.ast.2017.07.015.
- Belkhodja, Y., Ouinas, D., Fekirini, H., Vina Olay, J.A., Achour, B., Touahmia, M. and Boukendakdji, M. (2022), "A new hybrid HSDT for bending, free vibration, and buckling analysis of FGM plates (2D & quasi-3D)", Smart Struct Syst., 29, 395-420. https://doi.org/10.12989/sss.2022.29.3.395.
- Bodaghi, M. and Saidi, A.R. (2010), "Levy-type solution for buckling analysis of thick functionally graded rectangular plates based on the higher-order shear deformation plate theory", Appl. Math. Model., 34, 3659-3673. https://doi.org/10.1016/j.apm.2010.03.016.
- Chu, F., He, J., Wang, L. and Zhong, Z. (2016), "Buckling analysis of functionally graded thin plate with in-plane material inhomogeneity", Eng. Anal. Bound. Elem., 65, 112-125. https://doi.org/10.1016/j.enganabound.2016.01.007.
- Do, V.N.V. and Lee, C.H. (2019), "Free vibration analysis of FGM plates with complex cutouts by using quasi-3D Isogeometric approach", Int. J. Mech. Sci., 159, 213-233. https://doi.org/10.1016/j.ijmecsci.2019.05.034.
- Dozio, L. (2014), "Exact free vibration analysis of Levy FGM plates with higher-order shear and normal deformation theories", Compos. Struct., 111, 415-425. https://doi.org/10.1016/j.compstruct.2014.01.014.
- Gehlot, P., Sharma, A.K. and Rajawat, A.S. (2018), "Harmonic analysis of stiffened functionally graded plate using FEM", Mater. Today: Proc., 5, 5145-5153. https://doi.org/10.1016/j.matpr.2017.12.096.
- Ghannadpour, S.A.M. and Mehrparvar, M. (2020), "Nonlinear and post-buckling responses of FGM plates with oblique elliptical cutouts using plate assembly technique", Steel Compos. Struct., 34, 227-39. https://doi.org/10.12989/scs.2020.34.2.227.
- Hadji, L. (2017), "Analysis of functionally graded plates using a sinusoidal shear deformation theory", Smart Struct. Syst., 19, 441-448. https://doi.org/10.12989/SSS.2017.19.4.441.
- Hao, P., Wang, B., Li, G., Meng, Z., Tian, K., Zeng, D., Tang, X. (2014), "Worst multiple perturbation load approach of stiffened shells with and without cutouts for improved knockdown factors", Thin Wall. Struct., 82, 321-330. https://doi.org/10.1016/j.tws.2014.05.004.
- Hao, P., Wang, Y., Jin, L., Ma, S., Wang, B. (2023), "An isogeometric design-analysis-optimization workflow of stiffened thin-walled structures via multilevel NURBS-based free-form deformations (MNFFD)", Comput. Meth. Appl. Mech. Eng., 408, 115936. https://doi.org/10.1016/j.cma.2023.115936.
- Hosseini, S., Rahimi, G. and Anani, Y.A. (2021), "Meshless collocation method based on radial basis functions for free and forced vibration analysis of functionally graded plates using FSDT", Eng. Anal. Bound. Elem., 125, 168-177. https://doi.org/10.1016/j.enganabound.2020.12.016.
- Hussain, M. (2020), "Application of Kelvin's approach for material structure of CNT: Polynomial volume fraction law", Struct. Eng. Mech., 76, 129-139. https://doi.org/10.12989/sem.2020.76.1.129.
- Hussain, M. (2022a), "Controlling of ring based structure of rotating FG shell: Frequency distribution", Adv. Concrete Constr., 14, 35-43. https://doi.org/10.12989/acc.2022.14.1.035.
- Hussain, M. (2022b), "FG-based computational fracture of frequency up-conversion for bistablity of rotating shell: An effective numerical scheme", Adv. Concrete Constr., 13, 367-376. https://doi.org/10.12989/acc.2022.13.5.367.
- Hussain, M. and Naeem, M.N. (2019), "Effects of ring supports on vibration of armchair and zigzag FGM rotating carbon nanotubes using Galerkin's method", Compos. B Eng., 163, 548-561. https://doi.org/10.1016/j.compositesb.2018.12.144.
- Hussain, M. and Naeem, M.N. (2021a), "Vibration characteristics of zigzag FGM single-walled carbon nanotubes based on Ritz method with ring-stiffeners", Ind. J. Phys., 95, 2023-2034. https://doi.org/10.1007/s12648-020-01894-1.
- Hussain, M. and Naeem, M.N. (2021b), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Math. Model., 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039.
- Hussain, M. and Naeem, M.N. (2022), "Accurate compact solution of fluid-filled FG cylindrical shell inducting fluid term: Frequency analysis", J. Sandw. Struct. Mater., 24, 141-156. https://doi.org/10.1177/1099636221993897.
- Hussain, M. and Selmi, A. (2020), "Analytical vibration of FG cylindrical shell with ring support based on various configurations", Adv. Concrete Constr., 9, 557-568. https://doi.org/10.12989/acc.2020.9.6.557.
- Katili, I., Batoz, J.L., Maknun, I.J. and Katili, A.M. (2021), "On static and free vibration analysis of FGM plates using an efficient quadrilateral finite element based on DSPM", Compos. Struct., 261, 113-514. https://doi.org/10.1016/j.compstruct.2020.113514.
- Kim, J. and Reddy, J.N. (2013), "Analytical solutions for bending, vibration, and buckling of FGM plates using a couple stress-based third-order theory", Compos. Struct., 103, 86-98. https://doi.org/10.1016/j.compstruct.2013.03.007.
- Li, M., Guedes Soares, C. and Yan, R. (2021), "Free vibration analysis of FGM plates on Winkler/Pasternak/Kerr foundation by using a simple quasi-3D HSDT", Compos. Struct., 264, 113-643. https://doi.org/10.1016/j.compstruct.2021.113643.
- Liu, D.Y., Wang, C.Y. and Chen, W.Q. (2010), "Free vibration of FGM plates with in-plane material inhomogeneity", Compos. Struct., 92, 1047-1051. https://doi.org/10.1016/j.compstruct.2009.10.001.
- Magisano, D. and Garcea, G. (2022), "Sensitivity analysis to geometrical imperfections in shell buckling via a mixed generalized path-following method", Thin Wall. Struct., 170, 108643. https://doi.org/10.1016/j.tws.2021.108643.
- Maknun, I.J., Natarajan, S. and Katili, I. (2022), "Application of discrete shear quadrilateral element for static bending, free vibration and buckling analysis of functionally graded material plate", Compos. Struct., 284, 115130. https://doi.org/10.1016/j.compstruct.2021.115130.
- Meng, Z., Luo, X. and Zhou, H. (2022), "Lightweight design of arcuately stiffened cylindrical shells based on smeared stiffener method and active learning strategy", Thin Wall. Struct., 174, 109167. https://doi.org/10.1016/j.tws.2022.109167.
- Mohammadimehr, M., Afshari, H., Salemi, M., Torabi, K. and Mehrabi, M. (2019), "Free vibration and buckling analyses of functionally graded annular thin sector plate in-plane loads using GDQM", Struct. Eng. Mech., 71, 525-544. https://doi.org/10.12989/.2019.71.5.525.
- Nguyen, V.D. and Phung, V.B. (2023), "Static bending, free vibration, and buckling analyses of two-layer FGM plates with shear connectors resting on elastic foundations", Alex. Eng. J., 62, 369-390. https://doi.org/10.1016/j.aej.2022.07.038.
- Ramu, I. and Mohanty, S.C. (2014), "Buckling analysis of rectangular functionally graded material plates under uniaxial and biaxial compression load", Procedia Eng., 86, 748-757. https://doi.org/10.1016/j.proeng.2014.11.094.
- Ramu, I. and Mohanty, S.C. (2014), "Modal analysis of functionally graded material plates using finite element method", Procedia Mater. Sci., 6, 460-467. https://doi.org/10.1016/j.mspro.2014.07.059.
- Shariat, B.A.S. and Eslami, M.R. (2007), "Buckling of thick functionally graded plates under mechanical and thermal loads", Compos. Struct., 78, 433-439. https://doi.org/10.1016/j.compstruct.2005.11.001.
- Sitli, Y., Mhada, K., Bourihane, O. and Rhanim, H. (2021), "Buckling and post-buckling analysis of a functionally graded material (FGM) plate by the asymptotic numerical method", Struct., 31, 1031-1040. https://doi.org/10.1016/j.istruc.2021.01.100.
- Srinivas, P.N.S., Babu, R. and Balakrishna, B. (2020), "Microstructural, mechanical and tribological characterization on the Al based functionally graded material fabricated powder metallurgy", Mater. Res. Expr., 7, 26513. https://doi.org/10.1088/2053-1591/ab6f41.
- Tan, P., Nguyen Thanh, N., Rabczuk, T. and Zhou, K. (2018), "Static, dynamic and buckling analyzes of 3D FGM plates and shells via an Isogeometric-meshfree coupling approach", Compos. Struct., 198, 35-50. https://doi.org/10.1016/j.compstruct.2018.05.012.
- Thang, P.T. and Lee, J. (2018), "Free vibration characteristics of sigmoid-functionally graded plates reinforced by longitudinal and transversal stiffeners", Ocean Eng., 148, 53-61. https://doi.org/10.1016/j.oceaneng.2017.11.023.
- Uymaz, B. and Aydogdu, M. (2013), "Three dimensional mechanical buckling of FG plates with general boundary conditions", Compos. Struct., 96, 174-193. https://doi.org/10.1016/j.compstruct.2012.07.033.
- Uymaz, B. and Aydogdu, M. (2013), "Three dimensional shear buckling of FG plates with various boundary conditions", Compos. Struct., 96, 670-682. https://doi.org/10.1016/j.compstruct.2012.08.031.
- Van Do, T., Nguyen, D.K., Duc, N.D., Doan, D.H. and Bui, T.Q. (2017), "Analysis of bi-directional functionally graded plates by FEM and a new third-order shear deformation plate theory", Thin Wall. Struct., 119, 687-699. https://doi.org/10.1016/j.tws.2017.07.022.
- Vinh, P.V., Dung, N.T., Tho, N.C., Thom, D.V. and Hoa, L.K. (2021), "Modified single variable shear deformation plate theory for free vibration analysis of rectangular FGM plates", Struct., 29, 1435-1444. https://doi.org/10.1016/j.istruc.2020.12.027.
- Vivek, K.S., Sreedhar Babu, T. and Sai Ram, K.S. (2020), "Buckling analysis of functionally graded thin square plates with triangular cutout subjected to uni-axial loads", Mater. Today: Proc., 24, 662-672. https://doi.org/10.1016/j.matpr.2020.04.320.
- Wang, Q., Li, Z., Qin, B., Zhong, R. and Zhai, Z. (2021), "Vibration characteristics of functionally graded corrugated plates by using differential quadrature finite element method", Compos. Struct., 274, 114-344. https://doi.org/10.1016/j.compstruct.2021.114344.
- Yadav, S.S., Sangle, K.K., Shinde, S.A., Pendhari, S.S., Ghugal, Y.M. (2023), "Bending analysis of FGM plates using sinusoidal shear and normal deformation theory", Forces Mech., 11, 100185. https://doi.org/10.1016/j.finmec.2023.100185.
- Yaghoobi, H. and Fereidoon, A. (2014), "Mechanical and thermal buckling analysis of functionally graded plates resting on elastic foundations: An assessment of a simple refined nth-order shear deformation theory", Compos. B. Eng., 62, 54-64. https://doi.org/10.1016/j.proeng.2014.11.094.
- Yang, H.S., Dong, C.Y., Qin, X.C. and Wu, Y.H. (2020), "Vibration and buckling analyses of FGM plates with multiple internal defects using XIGA-PHT and FCM under thermal and mechanical loads", Appl. Math. Model., 78, 433-481. https://doi.org/https://doi.org/10.1016/j.apm.2019.10.011
- Zhao, X., Lee, Y.Y. and Liew, K.M. (2009), "Free vibration analysis of functionally graded plates using the element-free kp-Ritz method", J. Sound Vib., 319, 918-939. https://doi.org/10.1016/j.jsv.2008.06.025.
- Zhao, X., Lee, Y.Y. and Liew, K.M. (2009), "Mechanical and thermal buckling analysis of functionally graded plates", Compos. Struct., 90, 161-171. https://doi.org/10.1016/j.compstruct.2009.03.005.
- Zhong, S., Zhang, J., Jin, G., Ye, T. and Song, X. (2021), "Thermal bending and vibration of FGM plates with various cutouts and complex shapes using isogeometric method", Compos. Struct., 260, 113-518. https://doi.org/10.1016/j.compstruct.2020.113518.
- Zhu, Y., Shi, P., Kang, Y. and Cheng, B. (2019), "Isogeometric analysis of functionally graded plates with a logarithmic higher order shear deformation theory", Thin Wall. Struct., 144, 106-234. https://doi.org/10.1016/j.tws.2019.106234.