DOI QR코드

DOI QR Code

Analysis of stiffened Al/SiC FGM plates with cutout under uniaxial and localized in-plane edge loadings

  • P. Balaraman (School of Mechanical Engineering, SASTRA Deemed to be University) ;
  • V.M. Sreehari (School of Mechanical Engineering, SASTRA Deemed to be University)
  • 투고 : 2024.01.06
  • 심사 : 2024.03.19
  • 발행 : 2024.03.25

초록

Effect of ring and straight stiffeners in the buckling as well as vibration characteristics of metal-ceramic functionally graded plates with cutout subjected to various uniaxial and localized in-plane compressive edge loadings was explored in the present work. In the current work, the distinguishing characteristics of metal and ceramic are merged in a single volume, and power law was used for estimating the material composition throughout thickness. Buckling and free vibration characteristics were studied initially for unstiffened Al/SiC functionally graded plates with cutout. Subsequently, the influence of cutout ratio on buckling load as well as natural frequency for different power law indices was discussed. The functionally graded plate was stiffened by three different stiffener patterns, namely; ring stiffener, straight stiffener, as well as a combination of the ring and the straight stiffener, to enhance the buckling as well as vibration characteristics. The effect of stiffener depth ratio for different stiffener patterns was also presented for functionally graded plates having different cutout sizes under various loading conditions. Such studies on functionally graded material have potential applications in a variety of technological fields including the aerospace and defense sectors.

키워드

참고문헌

  1. Abbasnia, A., Jafari, M. and Rohani, A. (2021), "A novel method for estimation of stress concentration factor of central cutouts located in orthotropic plate", J. Brazil. Soc. Mech. Sci. Eng., 43, 348. https://doi.org/10.1007/s40430-021-03061-x.
  2. Abdelrahman, W.G. (2020), "Effect of material transverse distribution profile on buckling of thick functionally graded material plates according to TSDT", Struct. Eng. Mech., 74, 83-90. https://doi.org/10.12989/sem.2020.74.1.083.
  3. Abrate, S. (2006), "Free vibration, buckling, and static deflections of functionally graded plates", Compos. Sci. Technol., 66, 2383-2394. https://doi.org/10.1016/j.compscitech.2006.02.032.
  4. Akavci, S.S. and Tanrikulu, A.H. (2015), "Static and free vibration analysis of functionally graded plates based on a new quasi-3D and 2D shear deformation theories", Compos. B. Eng., 83, 203-215. https://doi.org/10.1016/j.compositesb.2015.08.043.
  5. Asemi, K., Salehi, M. and Sadighi, M. (2014), "Three dimensional static and dynamic analysis of two dimensional functionally graded annular sector plates", Struct. Eng. Mech., 51, 1067-1089. https://doi.org/10.12989/sem.2014.51.6.1067.
  6. Auad, S.P., Praciano, J.S.C., Barroso, E.S., Sousa Jr, J.B.M. and Parente Jr, E. (2019), "Isogeometric analysis of FGM plates", Mater. Today: Proc., 8, 738-746. https://doi.org/10.1016/j.matpr.2019.02.015.
  7. Balaraman, P., Stephen Joseph Raj, V. and Sreehari, V.M. (2022), "Static and dynamic analysis of re-entry vehicle nose structures made of different functionally graded materials", Aerosp., 9, 812. https://doi.org/10.3390/aerospace9120812.
  8. Behera, R.K., Patro, S.S. and Kishore Joshi, K. (2019), "Stability analysis of stiffened FG sandwich plates based on FEA", Mater. Today: Proc., 18, 3507-3513. https://doi.org/10.1016/j.matpr.2019.07.279.
  9. BeikMohammadlou, H. and EkhteraeiToussi, H. (2017), "Parametric studies on elastoplastic buckling of rectangular FGM thin plates", Aerosp. Sci. Technol., 69, 513-525. https://doi.org/10.1016/j.ast.2017.07.015.
  10. Belkhodja, Y., Ouinas, D., Fekirini, H., Vina Olay, J.A., Achour, B., Touahmia, M. and Boukendakdji, M. (2022), "A new hybrid HSDT for bending, free vibration, and buckling analysis of FGM plates (2D & quasi-3D)", Smart Struct Syst., 29, 395-420. https://doi.org/10.12989/sss.2022.29.3.395.
  11. Bodaghi, M. and Saidi, A.R. (2010), "Levy-type solution for buckling analysis of thick functionally graded rectangular plates based on the higher-order shear deformation plate theory", Appl. Math. Model., 34, 3659-3673. https://doi.org/10.1016/j.apm.2010.03.016.
  12. Chu, F., He, J., Wang, L. and Zhong, Z. (2016), "Buckling analysis of functionally graded thin plate with in-plane material inhomogeneity", Eng. Anal. Bound. Elem., 65, 112-125. https://doi.org/10.1016/j.enganabound.2016.01.007.
  13. Do, V.N.V. and Lee, C.H. (2019), "Free vibration analysis of FGM plates with complex cutouts by using quasi-3D Isogeometric approach", Int. J. Mech. Sci., 159, 213-233. https://doi.org/10.1016/j.ijmecsci.2019.05.034.
  14. Dozio, L. (2014), "Exact free vibration analysis of Levy FGM plates with higher-order shear and normal deformation theories", Compos. Struct., 111, 415-425. https://doi.org/10.1016/j.compstruct.2014.01.014.
  15. Gehlot, P., Sharma, A.K. and Rajawat, A.S. (2018), "Harmonic analysis of stiffened functionally graded plate using FEM", Mater. Today: Proc., 5, 5145-5153. https://doi.org/10.1016/j.matpr.2017.12.096.
  16. Ghannadpour, S.A.M. and Mehrparvar, M. (2020), "Nonlinear and post-buckling responses of FGM plates with oblique elliptical cutouts using plate assembly technique", Steel Compos. Struct., 34, 227-39. https://doi.org/10.12989/scs.2020.34.2.227.
  17. Hadji, L. (2017), "Analysis of functionally graded plates using a sinusoidal shear deformation theory", Smart Struct. Syst., 19, 441-448. https://doi.org/10.12989/SSS.2017.19.4.441.
  18. Hao, P., Wang, B., Li, G., Meng, Z., Tian, K., Zeng, D., Tang, X. (2014), "Worst multiple perturbation load approach of stiffened shells with and without cutouts for improved knockdown factors", Thin Wall. Struct., 82, 321-330. https://doi.org/10.1016/j.tws.2014.05.004.
  19. Hao, P., Wang, Y., Jin, L., Ma, S., Wang, B. (2023), "An isogeometric design-analysis-optimization workflow of stiffened thin-walled structures via multilevel NURBS-based free-form deformations (MNFFD)", Comput. Meth. Appl. Mech. Eng., 408, 115936. https://doi.org/10.1016/j.cma.2023.115936.
  20. Hosseini, S., Rahimi, G. and Anani, Y.A. (2021), "Meshless collocation method based on radial basis functions for free and forced vibration analysis of functionally graded plates using FSDT", Eng. Anal. Bound. Elem., 125, 168-177. https://doi.org/10.1016/j.enganabound.2020.12.016.
  21. Hussain, M. (2020), "Application of Kelvin's approach for material structure of CNT: Polynomial volume fraction law", Struct. Eng. Mech., 76, 129-139. https://doi.org/10.12989/sem.2020.76.1.129.
  22. Hussain, M. (2022a), "Controlling of ring based structure of rotating FG shell: Frequency distribution", Adv. Concrete Constr., 14, 35-43. https://doi.org/10.12989/acc.2022.14.1.035.
  23. Hussain, M. (2022b), "FG-based computational fracture of frequency up-conversion for bistablity of rotating shell: An effective numerical scheme", Adv. Concrete Constr., 13, 367-376. https://doi.org/10.12989/acc.2022.13.5.367.
  24. Hussain, M. and Naeem, M.N. (2019), "Effects of ring supports on vibration of armchair and zigzag FGM rotating carbon nanotubes using Galerkin's method", Compos. B Eng., 163, 548-561. https://doi.org/10.1016/j.compositesb.2018.12.144.
  25. Hussain, M. and Naeem, M.N. (2021a), "Vibration characteristics of zigzag FGM single-walled carbon nanotubes based on Ritz method with ring-stiffeners", Ind. J. Phys., 95, 2023-2034. https://doi.org/10.1007/s12648-020-01894-1.
  26. Hussain, M. and Naeem, M.N. (2021b), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Math. Model., 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039.
  27. Hussain, M. and Naeem, M.N. (2022), "Accurate compact solution of fluid-filled FG cylindrical shell inducting fluid term: Frequency analysis", J. Sandw. Struct. Mater., 24, 141-156. https://doi.org/10.1177/1099636221993897.
  28. Hussain, M. and Selmi, A. (2020), "Analytical vibration of FG cylindrical shell with ring support based on various configurations", Adv. Concrete Constr., 9, 557-568. https://doi.org/10.12989/acc.2020.9.6.557.
  29. Katili, I., Batoz, J.L., Maknun, I.J. and Katili, A.M. (2021), "On static and free vibration analysis of FGM plates using an efficient quadrilateral finite element based on DSPM", Compos. Struct., 261, 113-514. https://doi.org/10.1016/j.compstruct.2020.113514.
  30. Kim, J. and Reddy, J.N. (2013), "Analytical solutions for bending, vibration, and buckling of FGM plates using a couple stress-based third-order theory", Compos. Struct., 103, 86-98. https://doi.org/10.1016/j.compstruct.2013.03.007.
  31. Li, M., Guedes Soares, C. and Yan, R. (2021), "Free vibration analysis of FGM plates on Winkler/Pasternak/Kerr foundation by using a simple quasi-3D HSDT", Compos. Struct., 264, 113-643. https://doi.org/10.1016/j.compstruct.2021.113643.
  32. Liu, D.Y., Wang, C.Y. and Chen, W.Q. (2010), "Free vibration of FGM plates with in-plane material inhomogeneity", Compos. Struct., 92, 1047-1051. https://doi.org/10.1016/j.compstruct.2009.10.001.
  33. Magisano, D. and Garcea, G. (2022), "Sensitivity analysis to geometrical imperfections in shell buckling via a mixed generalized path-following method", Thin Wall. Struct., 170, 108643. https://doi.org/10.1016/j.tws.2021.108643.
  34. Maknun, I.J., Natarajan, S. and Katili, I. (2022), "Application of discrete shear quadrilateral element for static bending, free vibration and buckling analysis of functionally graded material plate", Compos. Struct., 284, 115130. https://doi.org/10.1016/j.compstruct.2021.115130.
  35. Meng, Z., Luo, X. and Zhou, H. (2022), "Lightweight design of arcuately stiffened cylindrical shells based on smeared stiffener method and active learning strategy", Thin Wall. Struct., 174, 109167. https://doi.org/10.1016/j.tws.2022.109167.
  36. Mohammadimehr, M., Afshari, H., Salemi, M., Torabi, K. and Mehrabi, M. (2019), "Free vibration and buckling analyses of functionally graded annular thin sector plate in-plane loads using GDQM", Struct. Eng. Mech., 71, 525-544. https://doi.org/10.12989/.2019.71.5.525.
  37. Nguyen, V.D. and Phung, V.B. (2023), "Static bending, free vibration, and buckling analyses of two-layer FGM plates with shear connectors resting on elastic foundations", Alex. Eng. J., 62, 369-390. https://doi.org/10.1016/j.aej.2022.07.038.
  38. Ramu, I. and Mohanty, S.C. (2014), "Buckling analysis of rectangular functionally graded material plates under uniaxial and biaxial compression load", Procedia Eng., 86, 748-757. https://doi.org/10.1016/j.proeng.2014.11.094.
  39. Ramu, I. and Mohanty, S.C. (2014), "Modal analysis of functionally graded material plates using finite element method", Procedia Mater. Sci., 6, 460-467. https://doi.org/10.1016/j.mspro.2014.07.059.
  40. Shariat, B.A.S. and Eslami, M.R. (2007), "Buckling of thick functionally graded plates under mechanical and thermal loads", Compos. Struct., 78, 433-439. https://doi.org/10.1016/j.compstruct.2005.11.001.
  41. Sitli, Y., Mhada, K., Bourihane, O. and Rhanim, H. (2021), "Buckling and post-buckling analysis of a functionally graded material (FGM) plate by the asymptotic numerical method", Struct., 31, 1031-1040. https://doi.org/10.1016/j.istruc.2021.01.100.
  42. Srinivas, P.N.S., Babu, R. and Balakrishna, B. (2020), "Microstructural, mechanical and tribological characterization on the Al based functionally graded material fabricated powder metallurgy", Mater. Res. Expr., 7, 26513. https://doi.org/10.1088/2053-1591/ab6f41.
  43. Tan, P., Nguyen Thanh, N., Rabczuk, T. and Zhou, K. (2018), "Static, dynamic and buckling analyzes of 3D FGM plates and shells via an Isogeometric-meshfree coupling approach", Compos. Struct., 198, 35-50. https://doi.org/10.1016/j.compstruct.2018.05.012.
  44. Thang, P.T. and Lee, J. (2018), "Free vibration characteristics of sigmoid-functionally graded plates reinforced by longitudinal and transversal stiffeners", Ocean Eng., 148, 53-61. https://doi.org/10.1016/j.oceaneng.2017.11.023.
  45. Uymaz, B. and Aydogdu, M. (2013), "Three dimensional mechanical buckling of FG plates with general boundary conditions", Compos. Struct., 96, 174-193. https://doi.org/10.1016/j.compstruct.2012.07.033.
  46. Uymaz, B. and Aydogdu, M. (2013), "Three dimensional shear buckling of FG plates with various boundary conditions", Compos. Struct., 96, 670-682. https://doi.org/10.1016/j.compstruct.2012.08.031.
  47. Van Do, T., Nguyen, D.K., Duc, N.D., Doan, D.H. and Bui, T.Q. (2017), "Analysis of bi-directional functionally graded plates by FEM and a new third-order shear deformation plate theory", Thin Wall. Struct., 119, 687-699. https://doi.org/10.1016/j.tws.2017.07.022.
  48. Vinh, P.V., Dung, N.T., Tho, N.C., Thom, D.V. and Hoa, L.K. (2021), "Modified single variable shear deformation plate theory for free vibration analysis of rectangular FGM plates", Struct., 29, 1435-1444. https://doi.org/10.1016/j.istruc.2020.12.027.
  49. Vivek, K.S., Sreedhar Babu, T. and Sai Ram, K.S. (2020), "Buckling analysis of functionally graded thin square plates with triangular cutout subjected to uni-axial loads", Mater. Today: Proc., 24, 662-672. https://doi.org/10.1016/j.matpr.2020.04.320.
  50. Wang, Q., Li, Z., Qin, B., Zhong, R. and Zhai, Z. (2021), "Vibration characteristics of functionally graded corrugated plates by using differential quadrature finite element method", Compos. Struct., 274, 114-344. https://doi.org/10.1016/j.compstruct.2021.114344.
  51. Yadav, S.S., Sangle, K.K., Shinde, S.A., Pendhari, S.S., Ghugal, Y.M. (2023), "Bending analysis of FGM plates using sinusoidal shear and normal deformation theory", Forces Mech., 11, 100185. https://doi.org/10.1016/j.finmec.2023.100185.
  52. Yaghoobi, H. and Fereidoon, A. (2014), "Mechanical and thermal buckling analysis of functionally graded plates resting on elastic foundations: An assessment of a simple refined nth-order shear deformation theory", Compos. B. Eng., 62, 54-64. https://doi.org/10.1016/j.proeng.2014.11.094.
  53. Yang, H.S., Dong, C.Y., Qin, X.C. and Wu, Y.H. (2020), "Vibration and buckling analyses of FGM plates with multiple internal defects using XIGA-PHT and FCM under thermal and mechanical loads", Appl. Math. Model., 78, 433-481. https://doi.org/https://doi.org/10.1016/j.apm.2019.10.011
  54. Zhao, X., Lee, Y.Y. and Liew, K.M. (2009), "Free vibration analysis of functionally graded plates using the element-free kp-Ritz method", J. Sound Vib., 319, 918-939. https://doi.org/10.1016/j.jsv.2008.06.025.
  55. Zhao, X., Lee, Y.Y. and Liew, K.M. (2009), "Mechanical and thermal buckling analysis of functionally graded plates", Compos. Struct., 90, 161-171. https://doi.org/10.1016/j.compstruct.2009.03.005.
  56. Zhong, S., Zhang, J., Jin, G., Ye, T. and Song, X. (2021), "Thermal bending and vibration of FGM plates with various cutouts and complex shapes using isogeometric method", Compos. Struct., 260, 113-518. https://doi.org/10.1016/j.compstruct.2020.113518.
  57. Zhu, Y., Shi, P., Kang, Y. and Cheng, B. (2019), "Isogeometric analysis of functionally graded plates with a logarithmic higher order shear deformation theory", Thin Wall. Struct., 144, 106-234. https://doi.org/10.1016/j.tws.2019.106234.