DOI QR코드

DOI QR Code

High-rate Single-Frequency Precise Point Positioning (SF-PPP) in the detection of structural displacements and ground motions

  • Mert Bezcioglu (Department of Geomatics Engineering, Gebze Technical University) ;
  • Cemal Ozer Yigit (Department of Geomatics Engineering, Gebze Technical University) ;
  • Ahmet Anil Dindar (Department of Civil Engineering, Gebze Technical University) ;
  • Ahmed El-Mowafy (School of Earth and Planetary Sciences, Curtin University) ;
  • Kan Wang (National Time Service Center, Chinese Academy of Sciences)
  • Received : 2023.03.13
  • Accepted : 2024.03.19
  • Published : 2024.03.25

Abstract

This study presents the usability of the high-rate single-frequency Precise Point Positioning (SF-PPP) technique based on 20 Hz Global Positioning Systems (GPS)-only observations in detecting dynamic motions. SF-PPP solutions were obtained from post-mission and real-time GNSS corrections. These include the International GNSS Service (IGS)-Final, IGS real-time (RT), real-time MADOCA (Multi-GNSS Advanced Demonstration tool for Orbit and Clock Analysis), and real-time products from the Australian/New Zealand satellite-based augmentation systems (SBAS, known as SouthPAN). SF-PPP results were compared with LVDT (Linear Variable Differential Transformer) sensor and single-frequency relative positioning (SF-RP) solutions. The findings show that the SF-PPP technique successfully detects the harmonic motions, and the real-time products-based PPP solutions were as accurate as the final post-mission products. In the frequency domain, all GNSS-based methods evaluated in this contribution correctly detect the dominant frequency of short-term harmonic oscillations, while the differences in the amplitude values corresponding to the peak frequency do not exceed 1.1 mm. However, evaluations in the time domain show that SF-PPP needs high-pass filtering to detect accurate displacement since SF-PPP solutions include trends and low-frequency fluctuations, mainly due to atmospheric effects. Findings obtained in the time domain indicate that final, real-time, and MADOCA-based PPP results capture short-term dynamic behaviors with an accuracy ranging from 3.4 mm to 8.5 mm, and SBAS-based PPP solutions have several times higher RMSE values compared to other methods. However, after high-pass filtering, the accuracies obtained from PPP methods decreased to a few mm. The outcomes demonstrate the potential of the high-rate SF-PPP method to reliably monitor structural and earthquake-induced ground motions and vibration frequencies of structures.

Keywords

Acknowledgement

This study is supported by the Scientific Research Project (No:2020-A-102-20), Gebze Technical University. This support is gratefully acknowledged. The authors also would like to thank to the RTKLIB, gLAB, MADOCA and AU/NZ SouthPAN for sharing their software and precise satellite products.

References

  1. Abd Rabbou, M., El-Shazly, A. and Ahmed, K. (2018), "Comparative analysis of multi constellation GNSS single-frequency precise point positioning", Survey Rev., 50(361), 373-382. https://doi.org/10.1080/00396265.2017.1296628.
  2. Allahvirdi-Zadeh, A., Wang, K. and El-Mowafy, A. (2021), "POD of small LEO satellites based on precise real-time MADOCA and SBAS-aided PPP corrections", GPS Solution., 25(2), 31. https://doi.org/10.1007/s10291-020-01078-8.
  3. Bahadur, B. (2022), "Real-time single-frequency precise positioning with Galileo satellites", J. Navig., 75(1), 124-140. https://doi.org/10.1017/S037346332100076X.
  4. Barrios, J., Caro, J., Calle, J.D., Carbonell, E., Pericacho, J.G., Fernandez, G., ... & Soddu, C. (2018), "Update on AUSTRALIA and New Zealand DFMC SBAS and PPP system results", Proceedings of the 31st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+2018), Florida, United States, September. https://doi.org/10.33012/2018.15932.
  5. Bezcioglu M., Yigit C.O., Karadeniz B., Dindar A.A., El-Mowafy A. and Avci, O. (2023), "Evaluation of real-time variometric approach and real-time precise point positioning in monitoring dynamic displacement based on high-rate (20 Hz) GPS Observations", GPS Solution., 27(1), 43. https://doi.org/10.1007/s10291-022-01381-6.
  6. Bezcioglu, M. (2023), "An investigation of the contribution of multi-GNSS observations to the single-frequency precise point positioning method and validation of the global ionospheric maps provided by different IAACs", Earth Sci. Inform., 16(3), 2511-2528. https://doi.org/10.1007/s12145-023-01058-9.
  7. Bezcioglu, M., Yigit, C.O., Mazzoni, A., Fortunato, M., Dindar, A.A. and Karadeniz, B. (2022), "High-Rate (20 Hz) single-frequency GPS/GALILEO variometric approach for real-time structural health monitoring and rapid risk assessment", Adv. Space Res., 70(5), 1388-1405. https://doi.org/10.1016/j.asr.2022.05.074.
  8. Cai, C., Liu, Z. and Luo, X. (2013), "Single-frequency ionosphere-free precise point positioning using combined GPS and GLONASS observations", J. Navig., 66(3), 417-434. https://doi.org/10.1017/S0373463313000039.
  9. Chen, H.Y., Tung, H., Hsu, Y.J. and Lee, H. (2019), "Evaluation of single frequency receivers for studying crustal deformation at the longitudinal Valley fault, eastern Taiwan", Survey Rev., 52(374), 454-462. https://doi.org/10.1080/00396265.2019.1634340.
  10. Chen, K., Ge, M., Li, X., Babeyko, A., Ramatschi, M. and Bradke, M. (2015), "Retrieving real-time precise co-seismic displacements with a standalone single-frequency GPS receiver", Adv. Space Res., 56(4), 634-647. https://doi.org/10.1016/j.asr.2015.04.029.
  11. Cosser, E., Roberts, G.W., Meng, X. and Dodson, A.H. (2003), "The comparison of single frequency and dual frequency GPS for bridge deflection and vibration monitoring", Proceedings of the Deformation Measurements and Analysis, 11th International Symposium on Deformation Measurements, Santorini, Greece, May.
  12. de Bakker, P.F. and Tiberius, C.C.J.M. (2017), "Real-time multi-GNSS single-frequency precise point positioning", GPS Solution., 21(4), 1791-1803. https://doi.org/10.1007/s10291-017-0653-2.
  13. El-Mowafy, A., Cheung, N. and Rubinov, E. (2020), "First results of using the second generation SBAS in Australian urban and suburban road environments", J. Spat. Sci., 65(1), 99-121. https://doi.org/10.1080/14498596.2019.1664943.
  14. ESA (2020), ESA GNSS Education GNSS-Lab tool Software User Manual.
  15. Ge, L., Han, S., Rizos, C., Ishikawa, Y., Hoshiba, M. and Yoshida, Y. (2000), "GPS seismometers with up to 20 Hz sampling rate", Earth Planet. Space, 52(10), 881-884. https://doi.org/10.1186/BF03352300.
  16. Guo, B., Zhang, X., Ren, X. and Li, X. (2015), "High-precision coseismic displacement estimation with a single-frequency GPS receiver", Geophys. J. Int., 202(1), 612-623. https://doi.org/10.1093/gji/ggv148.
  17. Huang, S.Q. and Wang, J.X. (2015), "New data processing strategy for single frequency GPS deformation monitoring", Survey Rev., 47(344), 379-385. https://doi.org/10.1179/1752270614Y.0000000138.
  18. Ibanez, D., Rovira-Garcia, A., Sanz, J., Juan, J.M., Gonzalez-Casado, G., Jimenez-Banos, D., ... & Lapin, I. (2018), "The GNSS laboratory tool suite (gLAB) updates: SBAS, DGNSS and global monitoring system", 9th ESA Workshop on Satellite Navigation Technologies (NAVITEC 2018), Noordwijk, Netherlands, December.
  19. Jo, H., Sim, S.H., Tatkowski, A., Spencer Jr, B.F. and Nelson, M.E. (2013), "Feasibility of displacement monitoring using low-cost GPS receivers", Struct. Control Hlth. Monit., 20(9), 1240-1254. https://doi.org/10.1002/stc.1532.
  20. Kaloop, M.R., Yigit, C.O., Dindar, A.A., Elshawary, M. and Hu, J.W. (2020), "Evaluation of the high-rate GNSS-PPP method for vertical structural motion", Survey Rev., 52(371), 159-171. https://doi.org/10.1080/00396265.2018.1534362.
  21. Kaloop, M.R., Yigit, C.O., El-Mowafy, A., Bezcioglu, M., Dindar, A.A. and Hu, J.W. (2020), "Evaluation of multi-GNSS high-rate relative positioning for monitoring dynamic structural movements in the urban environment", Geomat. Nat. Hazard. Risk, 11(1), 2239-2262. https://doi.org/10.1080/19475705.2020.1836040.
  22. Khaki, M. and El-Mowafy, A. (2020), "Characterizing positioning errors when using the second-generation australian satellite-based augmentation system", Artif. Satel., 55(1), 1-15. https://doi.org/10.2478/arsa-2020-0001.
  23. Kouba, J. (2015), "A guide to using international GNSS service (IGS) products", https://igs.org/wpcontent/uploads/2019/08/UsingIGSProductsVer21_cor.pdf.
  24. Kouba, J. and Heroux, P. (2001), "Precise Point Positioning using IGS orbit and clock products", GPS Solution., 5(2), 12-28. https://doi.org/10.1007/PL00012883.
  25. Lee, H., Lee, J.O., Musa, T.A. and Chen, H.Y. (2016), "A novel approach to design measurement models of single-frequency GPS receivers for cost-effective structural monitoring networks", Survey Rev., 49(354), 160-170. https://doi.org/10.1080/00396265.2016.1140394.
  26. Lee, S.W., Yun, S.H., Kim, D.H., Lee, D., Lee, Y.J. and Schutz, B.E. (2015), "Real-time volcano monitoring using GNSS Single-frequency receivers", J. Geophys. Res., 120(12), 8551-8569. https://doi.org/10.1002/2014JB011648.
  27. Li, L., Jia, C., Zhao, L., Cheng, J., Liu, J. and Ding, J. (2016). "Real-time single frequency precise point positioning using SBAS corrections", Sensor., 16(8), 1261. https://doi.org/10.3390/s16081261.
  28. Li, M., Li, W., Fang, R., Shi, C. and Zhao, Q. (2015), "Real-time high-precision earthquake monitoring using single-frequency GPS receivers", GPS Solution., 19(1), 27-35. https://doi.org/10.1007/s10291-013-0362-4.
  29. Lv, J., Gao, Z., Yang, C., Wei, Y. and Peng, J. (2022), "Investigation of displacement and ionospheric disturbance during an earthquake using single-Frequency PPP", Remote Sens., 14(7), 4286. https://doi.org/10.3390/rs14174286.
  30. Nie, Z., Gao, Y., Wang, Z., Ji, S. and Yang, H. (2018), "An approach to GPS clock prediction for real-time PPP during outages of RTS stream", GPS Solution., 22(1), 1-14. https://doi.org/10.1007/s10291-017-0681-y.
  31. Niell, A. (1996), "Global mapping functions for the atmosphere delay at radio wavelengths", J. Geophys. Res., 101(B2), 3227-3246. https://doi.org/10.1029/95JB03048.
  32. Nobakht-Ersi, F. and Safari, A. (2021), "Multi-GNSS (GPS/Galileo) single-frequency precise point positioning: a case study over Victoria", Earth Sci. Inform., 14(2), 1303-1313. https://doi.org/10.1007/s12145-021-00663-w.
  33. Odolinski, R. and Teunissen, P.J.G. (2017), "Low-cost, high-precision, single-frequency GPS-BDS RTK positioning", GPS Sol., 21(1), 1315-1330. https://doi.org/10.1007/s10291-017-0613-x.
  34. Oku Topal, G. and Akpinar, B. (2021), "High rate GNSS kinematic PPP method performance for monitoring the engineering structures: Shake table tests under different satellite configurations", Measure., 189, 110451. https://doi.org/10.1016/j.measurement.2021.110451.
  35. Pan, L., Cai, C., Santerre, R. and Zhang, X. (2017), "Performance evaluation of single-frequency precise point positioning with GPS, GLONASS, BeiDou and Galileo", Survey Rev., 49(354), 197-205. https://doi.org/10.1080/00396265.2016.1151628.
  36. Paziewski, J., Hoeg, P., Sieradzki, R., Jin, Y., Jarmolowski, W., Hoque, M.M., ... & Orus-Perez, R. (2022), "The implications of ionospheric disturbances for precise GNSS positioning in Greenland", J. Space Weather Space Climate, 12, 33. https://doi.org/10.1051/swsc/2022029.
  37. Paziewski, J., Kurpinski, G., Wielgosz, P., Stolecki, L., Sieradzki, R., Seta, M., Oszczak, S., Castillo, M. and Martin-Porqueras, F. (2020), "Towards galileo+GPS seismology: Validation of high-rate GNSS-based system for seismic events characterization", Measure., 166, 108236. https://doi.org/10.1016/j.measurement.2020.108236.
  38. Paziewski, J., Sieradzki, R. and Baryla, R. (2018), "Multi-GNSS high-rate RTK, PPP and novel direct phase observation processing method: Application to precise dynamic displacement detection", Measure. Sci. Technol., 29(3), 035002. https://doi.org/10.1088/1361-6501/aa9ec2.
  39. RTCA-MOPS (2016), Minimum Operational Performance Standards for Global Positioning System/Wide Area Augmentation System Airborne Equipment.
  40. Schaal, R.E. and Larocca, A. (2009), "Measuring dynamic oscillations of a small span cable-stayed footbridge: Case study using L1 GPS receivers", J. Survey Eng., 135(1), 33-37. https://doi.org/10.1061/(ASCE)0733-9453(2009)135:1(33).
  41. Shen, H., Li, S., Li, L., Zhang, W., Tian, Y., Hao, W. and Li, R. (2022), "Evaluation of ionospheric-constrained single-frequency PPP enhanced with an improved stochastic model", Earth Sci. Inform., 15(3), 1671-1681. https://doi.org/10.1007/s12145-022-00827-2.
  42. Sterle, O., Stopar, B. and Pavlovcic Preseren, P. (2015), "Single-frequency precise point positioning: an analytical approach", J. Geod., 89, 793-810. https://doi.org/10.1007/s00190-015-0816-2.
  43. Takasu, T. and Yasuda, A. (2009), "Development of the low-cost RTK-GPS receiver with an open-source program package RTKLIB", International Symposium on GPS/GNSS, Jeju, Korea, November.
  44. Tu, R., Wang, R., Ge, M., Walter, T.R., Ramatschi, M., Milkereit, C., Bindi, D. and Dahm, T. (2013), "Cost-effective monitoring of ground motion related to earthquakes, landslides, or volcanic activities by joint use of a single-frequency GPS and a MEMS accelerometer", Geophys. Res. Lett., 40(15), 3825-3829. https://doi.org/10.1002/grl.50653.
  45. Wu, J., Wang, K. and El-Mowafy, A. (2020), "Preliminary performance analysis of a prototype DFMC SBAS service over Australia and Asia-Pacific", Adv. Space Res., 66(6), 1329-1341. https://doi.org/10.1016/j.asr.2020.05.026.
  46. Xu, P., Shi, C., Fang, R., Liu, J., Niu, X., Zhang, Q. and Yanagidani, T. (2013), "High-rate precise point positioning (PPP) to measure seismic wave motions: an experimental comparison of GPS PPP with inertial measurement units", J. Geod., 87(4), 361-372. https://doi.org/10.1007/s00190-012-0606-z.
  47. Yigit, C.O. and Gurlek, E. (2017), "Experimental testing of high-rate GNSS precise point positioning (PPP) method for detecting dynamic vertical displacement response of engineering structures", Geomat., Nat. Hazard. Risk., 8(2), 893-904. https://doi.org/10.1080/19475705.2017.1284160.
  48. Yigit, C.O., Bezcioglu, M., Ilci, V., Ozulu, I.M., Alkan, R.M., Dindar, A.A. and Karadeniz B. (2022), "Assessment of Real-Time PPP with Trimble RTX correction service for real-time dynamic displacement monitoring based on high-rate GNSS observations", Measure., 201, 111704. https://doi.org/10.1016/j.measurement.2022.111704.
  49. Yigit, C.O., El-Mowafy, A., Bezcioglu, M. and Dindar, A.A. (2020), "Investigating the effects of ultra-rapid, rapid vs. final precise orbit and clock products on high-rate GNSS-PPP for capturing dynamic displacements", Struct. Eng. Mech., 73(4), 427-436. https://doi.org/10.12989/sem.2020.73.4.427.
  50. Yigit, C.O., El-Mowafy, A., Dindar, A.A., Bezcioglu, M. and Tiryakioglu, I. (2021), "Investigating performance of high-rate GNSS-PPP and PPP-AR for structural health monitoring: dynamic tests on shake table", J. Survey Eng., 147(1), 05020011. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000343.
  51. Yunck, T.P. (1993), "Coping with the atmosphere and ionosphere in precise satellite and ground positioning", Geophys. Monogr. 73, 1-16. https://doi.org/10.1029/gm073p0001.
  52. Zheng, K., Zhang, X., Li, X., Li, P., Sang, J., Ma, T. and Schuh, H. (2019), "Capturing coseismic displacement in real time with mixed single- and dual-frequency receivers: Application to the 2018 Mw 7.9 Alaska earthquake", GPS Solution., 23, 9. https://doi.org/10.1007/s10291-018-0794-y.
  53. Zumberge, J.F., Heflin, M.B., Jefferson, D.C., Watkins, M.M. and Webb, F.H. (1997), "Precise point positioning for the efficient and robust analysis of GPS data from large networks", J. Geophys. Res., 102(B3), 5005-5017. https://doi.org/10.1029/96JB03860.