DOI QR코드

DOI QR Code

Electric field strength effect on bi-stability of composite thin cylindrical shell with piezoelectric layer

  • Yaopeng Wu (School of Civil Engineering, Xi'an University of Architecture and Technology) ;
  • Nan Zheng (School of Civil Engineering, Xi'an University of Architecture and Technology) ;
  • Yaohuan Wu (School of Civil Engineering and Architecture, Kaifeng University) ;
  • Quan Yang (School of Civil Engineering, Xi'an University of Architecture and Technology)
  • 투고 : 2024.01.16
  • 심사 : 2024.03.05
  • 발행 : 2024.03.25

초록

The bistable thin cylindrical shell is developable structure with the ability to transition between its two stable configurations. This structure offers significant potential applications due to its excellent deformability. In this paper, the composite thin cylindrical shell consisting of the composite layer and the piezoelectric layer was investigated. The material and geometric parameters of the shell were found to influence its stable characteristics. The analysis model of the composite thin cylindrical shell incorporating the piezoelectric layer was developed, and the expressions for its strain energy were derived. By applying the minimum energy principle, the impact of the electric field intensity on the bi-stable behaviors of the cylindrical shell was analyzed. The results showed that the shell exhibited the bistability only under the appropriate electric field strength. And the accuracy of the theoretical prediction was verified by simulation experiments. This study provides an important reference for the application of deployable structures.

키워드

과제정보

This research was sponsored by the China's National Natural Science Foundation (grant 51108371), and the Shaanxi Natural Science Basic Research Plan (grant 2023-JC-YB-435). The authors are grateful for the financial supports provided by all of those sponsors.

참고문헌

  1. Anilkumar, P.M., Haldar, A., Scheffler, S., Jansen, E.L., Rao, B.N. and Rolfes, R. (2022), "Morphing of bistable variable stiffness composites using distributed MFC actuators", Compos. Struct., 289, 115396. https://doi.org/10.1016/j.compstruct.2022.115396.
  2. Brunetti, M., Vidoli, S. and Vincenti, A. (2010), "Bistability of orthotropic shells with clamped boundary conditions: An analysis by the polar method", Compos. Struct., 194, 388-397. https://doi.org/10.1016/j.compstruct.2018.04.009.
  3. Dano, M.L. and Hyer, M.W. (2003), "SMA-induced snap-through of unsymmetric fiber-reinforced composite laminates", Int. J. Solid. Struct., 40, 5949-5972. https://doi.org/10.1016/j.compstruct.2022.115396.
  4. Gandhi, Y., Pirondi, A. and Collini, L. (2018), "Analysis of bistable composite laminate with embedded SMA actuators", Procedia Struct. Integr., 12, 429-437. https://doi.org/10.1016/j.prostr.2018.11.075.
  5. Gohari, S., Sharifi, S. and Vrcelj, Z. (2017), "A novel explicit solution for twisting control of smart laminated cantilever composite plates/beams using inclined piezoelectric actuators", Compos. Struct., 161, 477-504. https://doi.org/10.1016/j.compstruct.2016.11.063.
  6. Groh, R.M.J. and Pirrera, A. (2018), "Extreme mechanics in laminated shells: New insights", Extr. Mech. Lett., 23, 17-23. https://doi.org/10.1016/j.eml.2018.07.004.
  7. Guo, Y., Serhat, G., Perez, M.G. and Knippers, J. (2022), "Maximizing buckling load of elliptical composite cylinders using lamination parameters", Eng. Struct., 262, 114342. https://doi.org/10.1016/j.engstruct.2022.114342.
  8. Hyer, M.W. (1981), "Calculations of the room-temperature shapes of unsymmetric laminates", Compos. Mater., 15, 296-310. https://doi.org/10.1177/002199838101500401.
  9. Knott, G. and Viquerat, A. (2019), "Helical bistable composite slit tubes", Compos. Struct., 207, 711-726. https://doi.org/10.1016/j.compstruct.2018.09.045.
  10. Knott, G. and Viquerat, A. (2019), "Helical bistable composite slit tubes", Compos. Struct., 207, 711-726. https://doi.org/10.1016/j.compstruct.2018.09.045.
  11. Koh, M., Wang, Y., Shea, K. and Chen, T. (2023), "Shape reconfiguring bistable structures using heat activated fibers", Eng. Struct., 295, 116792. https://doi.org/10.1016/j.engstruct.2023.116792.
  12. Lee, A.J., Moosavian, A. and Inman, D.J. (2017), "A piezoelectrically generated bistable laminate for morphing", Mater. Lett., 2, 123-126. https://doi.org/10.1016/j.matlet.2017.01.005.
  13. Pan, D., Li, Y. and Dai, F. (2017), "The influence of lay-up design on the performance of bi-stable piezoelectric energy harvester", Compos. Struct., 161, 227-236. https://doi.org/10.1016/j.compstruct.2016.11.026.
  14. Sousa, C.S, Camanho, P.P. and Suleman, A. (2013), "Analysis of multistable variable stiffness composite plates", Compos. Struct., 98, 34-46. https://doi.org/10.1016/j.compstruct.2012.10.053.
  15. Wang, J., Nartey, M.A., Scarpa, F., Cui, W. and Peng, H.X. (2021), "Design and manufacturing of highly tailorable pre-bent bistable composites", Compos. Struct., 276, 114519. https://doi.org/10.1016/j.compstruct.2021.114519.
  16. Wu, Y., Gao, K. and Ren, Q. (2020), "Hydrothermal effect on Bistability of composite cylindrical shell", Compos. Struct., 232, 111554. https://doi.org/10.1016/j.compstruct.2019.111554.
  17. Wu, Y., Lu, E. and Zhang, S. (2018), "Study on bi-stable behaviors of un-stressed thin cylindrical shells based on the extremal principle", Struct. Eng. Mech., 68(3), 377-384. https://doi.org/10.12989/sem.2018.68.3.377.
  18. Yi, S.H., He, X.Q. and Lu, J. (2018), "Bistable metallic materials produced by nanocrystallization process", Mater. Des., 141, 374-383. https://doi.org/10.1016/j.matdes.2018.01.010.
  19. Zhai, Y.C., Chai, M.J. and Su, J.M. (2018), "Dynamics properties of composite sandwich open circular cylindrical shells", Compos. Struct., 189, 148-159. https://doi.org/10.1016/j.compstruct.2018.01.076.
  20. Zhang, M., Guo, J. and Li, Y. (2010), "Characterisation and modelling of the cured shapes of arbitrary layup bistable composite laminates", Compos. Struct., 92, 1694-1700. https://doi.org/10.1007/s10483-022-2818-6.
  21. Zhang, Z., Li, Y., Yu, X., Li, X., Wu, H., Wu, H., ... & Chai, G. (2019), "Bistable morphing composite structures: A review", Thin Wall. Struct., 142, 74-97. https://doi.org/10.1016/j.tws.2019.04.040.