DOI QR코드

DOI QR Code

Nonlocal bending, vibration and buckling of one-dimensional hexagonal quasicrystal layered nanoplates with imperfect interfaces

  • Haotian Wang (Department of Mechanics, Inner Mongolia University of Technology) ;
  • Junhong Guo (Department of Mechanics, Inner Mongolia University of Technology)
  • 투고 : 2023.05.17
  • 심사 : 2024.03.07
  • 발행 : 2024.03.25

초록

Due to interfacial ageing, chemical action and interfacial damage, the interface debonding may appear in the interfaces of composite laminates. Particularly, the laminates display a side-dependent effect at small scale. In this work, a three-dimensional (3D) and anisotropic thick nanoplate model is proposed to investigate the effects of imperfect interface and nonlocal parameter on the bending deformation, vibrational response and buckling stability of one-dimensional (1D) hexagonal quasicrystal (QC) layered nanoplates. By combining the linear spring model with the transferring matrix method, exact solutions of phonon and phason displacements, phonon and phason stresses of bending deformation, the natural frequencies of vibration and the critical buckling loads of 1D hexagonal QC layered nanoplates are derived with imperfect interfaces and nonlocal effects. Numerical examples are illustrated to demonstrate the effects of the imperfect interface parameter, aspect ratio, thickness, nonlocal parameter, and stacking sequence on the bending deformation, the vibrational response and the critical buckling load of 1D hexagonal QC layered nanoplate. The results indicate that both the interface debonding and nonlocal effect can reduce the stiffness and stability of layered nanoplates. Increasing thickness of QC coatings can enhance the stability of sandwich nanoplates with the perfect interfaces, while it can reduce first and then enhance the stability of sandwich nanoplates with the imperfect interfaces. The biaxial compression easily results in an instability of the QC layered nanoplates compared to uniaxial compression. QC material is suitable for surface layers in layered structures. The mechanical behavior of QC layered nanoplates can be optimized by imposing imperfect interfaces and controlling the stacking sequence artificially. The present solutions are helpful for the various numerical methods, thin nanoplate theories and the optimal design of QC nano-composites in engineering practice with interfacial debonding.

키워드

과제정보

Project supported by the National Natural Science Foundation of China (Nos. 12072166 and 11862021), the Program for Science and Technology of Inner Mongolia Autonomous Region of China (No. 2021GG0254), the Fundamental Research Funds of University Directly Under the Autonomous Region (No. JY20220075) and the Natural Science Foundation of Inner Mongolia Autonomous Region of China (No. 2020MS01006).

참고문헌

  1. Ahmadi, R.A., Eskandari, A., Mohammadi, B. and Hosseini, S.H. (2023), "Study on the effect of viscosity and fluid flow on buckling behavior of nanoplate with surface energy", Result. Eng., 18, 101078. https://doi.org/10.1016/j.rineng.2023.101078.
  2. Ahmadi, R.A., Hosseini, K.H., Taghi, M.A., Bijan, M. and Hosseini, S.H. (2023), "Coronary artery lipid accumulation prevention through vibrating piezo electric nano plates embedded in smart stent", Med. Eng. Phys., 118, 104021- 104021. https://doi.org/10.1016/j.medengphy.2023.104021.
  3. Ahmadi, R.A., Mohammadi, B., Taghi, M.A. and Hosseini, S.H. (2023), "Study on the buckling behavior of nonlocal nanoplate submerged in viscous moving fluid", Int. J. Dyn. Control, 11(6), 2820-2830. https://doi.org/10.1007/s40435-023-01166-w.
  4. Ali, F., Scudino, S., Anwar, M.S., Shahid, R.N., Srivastava, V.C., Uhlenwinkel, V., Stoica, M., Vaughan, G. and Eckert, J. (2014), "Al-based metal matrix composites reinforced with Al-Cu-Fe quasicrystalline particles: Strengthening by interfacial reaction", J. Alloy. Compound., 607, 274-279. https://doi.org/10.1016/j.jallcom.2014.04.086.
  5. Ansari, R. and Rouhi, H. (2012), "Explicit analytical expressions for the critical buckling stresses in a monolayer graphene sheet based on nonlocal elasticity", Solid State Commun., 152(2), 56-59. https://doi.org/10.1016/j.ssc.2011.11.004.
  6. Ansari, R. and Sahmani, S. (2013), "Prediction of biaxial buckling behavior of single-lay- ered graphene sheets based on nonlocal plate models and molecular dynamics simulations", Appl. Math. Model., 37, 7338-7351. https://doi.org/10.1016/j.apm.2013.03.004.
  7. Arash, B. and Wang, Q. (2012), "A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes", Comput. Mater. Sci., 51, 303-313. https://doi.org/10.1007/978-3-319-01201-8_2.
  8. Auquier, N., Ege, K. and Gourdon, E. (2022), "Equivalent dynamic model of multilayered structures with imperfect interfaces: Application to a sandwich structured plate with sliding interfaces", J. Sound Vib., 535, 117052. https://doi.org/10.1016/j.jsv.2022.117052.
  9. Benveniste, Y. (2006), "A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media", J. Mech. Phys. Solid., 54(4), 708-734. https://doi.org/10.1016/j.jmps.2005.10.009.
  10. Benveniste, Y. (2014), "Exact results for the local fields and the effective moduli of fibrous composites with thickly coated fibers", J. Mech. Phys. Solid., 71, 219-238. https://doi.org/10.1016/j.jmps.2014.07.005.
  11. Bindi, L., Yao, N., Lin, C., Hollister, L.S., Andronicos, C.L., Distler, V.V., ... & Steinhardt, P.J. (2015), "Natural quasicrystal with decagonal symmetry", Scientif. Reprt., 5, 9111. https://doi.org/10.1038/srep09111.
  12. Bloom, P.D., Baikerikar, K.G., Otaigbe, J.U. and Sheares, V.V. (2000), "Development of novel polymer/quasicrystal composite materials", Mater. Sci. Eng. A, 294-296, 156-159. https://doi.org/10.1016/S0921-5093(00)01230-2.
  13. Bui, V. (1999), "Imperfect interlaminar interfaces in laminated composites: Bending, buckling and transient reponses", Compos. Sci. Technol., 59(15), 2269-2277. https://doi.org/10.1016/S0266-3538(99)00081-0.
  14. Chang, S.Y., Chen, B.J., Hsiao, Y.T., Wang, D.S., Chen, T.S., Leu, M.S. and Lai, H.J. (2018), "Preparation and nanoscopic plastic deformation of toughened Al-Cu-Fe-based quasicrystal/vanadium multilayered coatings", Mater. Chem. Phys., 213, 277-284. https://doi.org/10.1016/j.matchemphys.2018.04.045.
  15. Chen, T., Chiu, M.S. and Weng, C.N. (2006), "Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids", J. Appl. Phys., 100(7), 65. https://doi.org/10.1063/1.2356094.
  16. Chen, W.Q. and Kang, Y.L. (2004), "Three-dimensional exact analysis of angle-ply laminates in cylindrical bending with interfacial damage via state-space method", Compos. Struct., 64(3/4), 275-283. https://doi.org/10.1016/j.compstruct.2003.08.010.
  17. Chen, W.Q., Cai, J.B. and Ye, G.R. (2003), "Exact solutions of cross-ply laminates with bonding imperfections", AIAA J., 41(11), 2244-2250. https://doi.org/10.2514/2.6817.
  18. Chen, W.Q., Zhou, Y.Y., Lu, C.F. and Ding, H.J. (2009), "Bending of multiferroic laminated rectangular plates with imperfect interlaminar bonding", Eur. J. Mech./A Solid., 28(4), 720-727. https://doi.org/10.1016/j.euromechsol.2009.02.008.
  19. Cheng, Z.Q., He, L.H. and Kitipornchai, S. (2000), "Influence of imperfect interfaces on bending and vibration of laminated composite shells", Int. J. Solid. Struct., 37(15), 2127-2150. https://doi.org/10.1016/S0020-7683(98)00294-7.
  20. Cheng, Z.Q., Jemah, A.K. and Williams, F.W. (1996a), "Theory for multilayered anisotropic plates with weakened interfaces", J. Appl. Mech., 63, 1019-1026. https://doi.org/10.1115/1.2787221.
  21. Cheng, Z.Q., Kennedy, D. and Williams, F.W. (1996b), "Effect of Interfacial imperfection on buckling and bending behavior of composite laminates", AIAA J., 34(12), 2590-2595. https://doi.org/10.2514/3.13443.
  22. Dubois, J.M. (2000), "New prospects from potential applications of quasicrystalline materials", Mater. Sci. Eng. A, 294, 4-9. https://doi.org/10.1016/S0921-5093(00)01305-8.
  23. Dubois, J.M., Archambault, P. and Bresson, L. (1996), "Procede de preparation d'alliages quasicristallins Al Cu Fe MB alliages obtenus et leurs applications", French Patent, 9602224.
  24. Eisenhammer, T. (1997), New Horizons in Quasicrystals: Research and Applications, World Scientific, Singapore.
  25. Eringen, A.C. (1972a), "Linear theory of nonlocal elasticity and dispersion of plane waves", Int. J. Eng. Sci., 10(5), 425-435. https://doi.org/10.1016/0020-7225(72)90050-X.
  26. Eringen, A.C. (1972b), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
  27. Eringen, A.C. and Wegner, J.L. (2003), "Nonlocal continuum field theories", Appl. Mech. Rev., 56(2), B20-B22. https://doi.org/10.1115/1.1553434.
  28. Fan, T.Y. (2013), "Mathematical theory and methods of mechanics of quasicrystalline materials", Eng., 05(4), 407-448. https://doi.org/10.4236/eng.2013.54053.
  29. Fan, T.Y. (2016), The Mathematical Theory of Elasticity of Quasicrystals and Its Application, Springer, New York. 
  30. Feng, X., Fan, X.Y., Li, Y., Zhang, H., Zhang, L.L. and Gao, Y. (2021), "Static response and free vibration analysis for cubic quasicrystal laminates with imperfect interfaces", Eur. J. Mech.-A/Solid., 90(14), 104365. https://doi.org/10.1016/j.euromechsol.2021.104365.
  31. Feng, X., Zhang, L.L., Zhu, Z.W., Li, Y. and Gao, Y. (2022), "Forced vibration analysis of inhomogeneous quasicrystal coating in a thermal environment", Front. Mater., 9, 963149. https://doi.org/10.3389/fmats.2022.963149.
  32. Galano, M., Marsh, A., Audebert, F., Xu, W. and Ramundo, M. (2015), "Nanoquasicrystalline Al-based matrix/γ-Al2O3 nanocomposites", J. Alloy. Compound., 643, S99. https://doi.org/10.1016/j.jallcom.2014.12.063.
  33. Ghayesh, H.M. and Farajpour, A.A. (2019), "Review on the mechanics of functionally graded nanoscale and microscale structures", Int. J. Eng. Sci., 137, 8-36. https://doi.org/10.1016/j.ijengsci.2018.12.001.
  34. Guo, J.H., Sun, T.Y. and Pan, E. (2020b), "Three-dimensional nonlocal buckling of composite nanoplates with coated one-dimensional quasicrystal in an elastic medium", Int. J. Solid. Struct., 185-186, 272-280. https://doi.org/10.1016/j.ijsolstr.2019.08.033.
  35. Guo, J.H., Zhang, M., Chen, W.Q., Zhang, X.Y. (2020a), "Free and forced vibration of layered one-dimensional quasicrystal nanoplates with modified couple-stress effect", Sci. ChinaPhys., Mech. Astron., 63(7), 274621. https://doi.org/10.1007/s11433-020-1547-3.
  36. Huang, R.K., Ding, S.H., Chen, Q.W.L., Lv, C.F., Zhang, X. and Li, X. (2022), "Sliding frictional contact of one dimensional hexagonal piezoelectric quasicrystals coating on piezoelectric substrate with imperfect interface", Int. J. Solid. Struct., 239, 111423. https://doi.org/10.1016/j.ijsolstr.2022.111423.
  37. Inoue, A., Kimura, H. and Amiya, K. (2004), "Recent progress in bulk glassy, nano-quasicrystalline and nanocrystalline alloys", Mater. Sci. Eng. A, 375, 16-30. https://doi.org/10.1016/j.msea.2003.10.159.
  38. Lazar, M., Maugin, A.G. and Aifantis, C.E. (2005), "Dislocations in second strain gradient elasticity", Int. J. Solid. Struct., 43(6), 1787-1817. https://doi.org/10.1016/j.ijsolstr.2005.07.005.
  39. Legtenberg, R. and Tilmans, H.A.C. (1994), "Electrostatically driven vacuum-encapsulated polysilicon resonators part i. design and fabrication", Sensor. Actuat. A Phys., 45(1), 57-66. https://doi.org/10.1016/0924-4247(94)00812-4.
  40. Li, R.T., Dong, Z.L. and Khor, K.A. (2016), "Al-Cr-Fe quasicrystals as novel reinforcements in Ti based composites consolidated using high pressure spark plasma sintering", Mater. Des., 102, 255-263. https://doi.org/10.1016/j.matdes.2016.04.040.
  41. Li, X.F., Guo, J.H. and Sun, T.Y. (2019), "Bending deformation of multilayered one-dimensional quasicrystal nanoplates based on the modified couple stress theory", Acta Mechanica Solida Sinica, 32(6), 785-802. https://doi.org/10.1007/s10338-019-00120-8.
  42. Li, Y., Yang, L.Z, Zhang, L.L. and Gao, Y. (2020), "Three-dimensional exact solution of layered two-dimensional quasicrystal simply supported nanoplates with size-dependent effects", Appl. Math. Model., 87, 42-54. https://doi.org/10.1016/j.apm.2020.05.001.
  43. Li, Z.K., He, Y.M., Lei, J., Guo, S., Liu, D.B. and Wang, L. (2018), "A standard experimental method for determining the material length scale based on modified couple stress theory", Int. J. Mech. Sci., 141, 198-205. https://doi.org/10.1016/j.ijmecsci.2018.03.035.
  44. Lopez, J.C., Realpozo, R.A., Rodriguez-Ramos, J. and Quintero, R.H. (2020), "Behavior of piezoelectric layered composites with mechanical and electrical non-uniform imperfect contacts", Meccanica, 55(1), 125-138. https://doi.org/10.1007/s11012-019-01111-2.
  45. Louzguine-luzgin, D.V. and Inoue, A. (2008), "Formation and properties of quasicrystals", Ann. Rev. Mater. Res., 38, 403-23. https://doi.org/10.1146/annurev.matsci.38.060407.130318.
  46. Mindlin, R.D. (1964), "Micro-structure in linear elasticity", Arch. Rat. Mech. Anal., 16, 51-78. https://doi.org/10.1007/BF00248490
  47. Pan, E. (2001), "Exact solution for simply supported and multilayered magneto-electro-elastic plates", J. Appl. Mech., 68(4), 608-618. https://doi.org/10.1115/1.1380385.
  48. Pradhan, S.C. and Murmu, T. (2010), "Small scale effect on the buckling of single-layered graphene sheets under biaxial compression via nonlocal continuum mechanics", Comput. Mater. Sci., 47(1), 268-274. https://doi.org/10.1016/j.commatsci.2009.08.001.
  49. Saintfort, P. and Dubost, B. (1988), Quasicrystalline Materials, World Scientific, Singapore, 361.
  50. Shahabodini, A. and Ahmadi, B. (2022), "On the buckling and bending analysis of FG straight-sided quadrilateral nanoplates using a continuum mechanics-based surface elastic model", Proc. Inst. Mech. Eng., Part N: J. Nanomater., Nanoeng. Nanosyst., 236(3-4), 69-86. https://doi.org/10.1177/23977914211069011.
  51. Shahabodini, A., Ansari, R. and Rouhi, H. (2021), "A three-dimensional surface elastic model for vibration analysis of functionally graded arbitrary straight-sided quadrilateral nanoplates under thermal environment", J. Mech., 37, 72-99. https://doi.org/10.1093/jom/ufaa011.
  52. Shechtman, D., Blech, I., Gratias, D. and Cahn, J.W. (1984), "Metallic phase with long-range orientational order and no translational symmetry", Phys. Rev. Lett., 53, 1951-1953. https://doi.org/10.1103/PhysRevLett.53.1951.
  53. Stroh, A.N. (1958), "Dislocations and cracks in anisotropic elasticity", Philos. Mag., 3(30), 625-646. https://doi.org/10.1080/14786435808565804.
  54. Sulym, H., Vasylyshyn, A. and Pasternak, I. (2022), "Influence of imperfect interface of anisotropic thermomagnetoelectroelastic bimaterial solids on interaction of thin deformable inclusions", Acta Mechanica et Automatica, 16(3), 242-249. https://doi.org/10.2478/ama-2022-0029
  55. Suman, G. and Sahu, S.A. (2021), "Love wave transference in piezomagnetic layered structure guided by an imperfect interface", GEM-Int. J. Geomath., 12, 1-14. https://doi.org/10.1007/s13137-021-00173-3.
  56. Sun, T.Y., Guo, J.H. and Pan, E. (2021), "Nonlocal vibration and buckling of two-dimensional layered quasicrystal nanoplates embedded in an elastic medium", Appl. Math. Mech. (English Ed.), 42(8), 1-18. https://doi.org/10.1007/s10483-021-2743-6.
  57. Tian, H.L., Wang, C.L., Li, Z., Iefimov, M.O., Zakharova, N.P. and Goncharuk, V.A. (2022), "Structure-phase state and properties of HVAF quasi-crystalline Al-Cu-Fe coating produced from water-atomized powder", Metallofiz Noveishie Tekhnol, 44(11), 1417-1432. https://doi.org/10.15407/mfint.44.11.1417
  58. Tilmans, H.A.C. and Legtenberg, R. (1994), "Electrostatically driven vacuum-encapsulated polysilicon resonators part ii. theory and performance", Sensor. Actuat. A, 45, 67-84. https://doi.org/10.1016/0924-4247(94)00813-2.
  59. Ustinov, A.I., Movchan, B.A. and Polishchuk, S.S. (2004), "Formation of nanoquasicrystalline Al-Cu-Fe coatings at electron beam physical vapour deposition", Scripta Materialia, 50, 533-537. https://doi.org/10.1016/j.scriptamat.2003.10.025.
  60. Vattre, A. and Pan, E. (2021), "Thermoelasticity of multilayered plates with imperfect interfaces", Int. J. Eng. Sci., 158, 103409. https://doi.org/10.1016/j.ijengsci.2020.103409.
  61. Waksmansk, N. and Pan, E. (2017), "Nonlocal analytical solutions for multilayered one-dimensional quasicrystal nanoplates", J. Vib. Acoust., 139(2), 021006-16. https://doi.org/10.1115/1.4035106.
  62. Wang, H.T., Guo, J.H., Jiang, X. and Gao, M.Z. (2022), "Bending and vibration of one-dimensional hexagonal quasicrystal layered plates with imperfect interface", Acta Mechanica, 233, 4029-4046. https://doi.org/10.1007/s00707-022-03318-z.
  63. Wang, Q. and Wang, C.M. (2007), "The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes", Nanotechnol., 18(7), 075702. https://doi.org/10.1088/0957-4484/18/7/075702.
  64. Wang, X. and Pan, E. (2007), "Exact solutions for simply supported and multilayered piezothermoelastic plates with imperfect interfaces", Open Mech. J., 1(1), 1-10. https://doi.org/10.2174/1874158400701010001.
  65. Wang, Z., Zhu, J., Jin, X.Y., Chen, W.Q. and Zhang, C. (2014), "Effective moduli of ellipsoidal particle reinforced piezoelectric composites with imperfect interfaces", J. Mech. Phys. Solid., 65, 138-156. https://doi.org/10.1016/j.jmps.2013.12.007.
  66. Yang, F., Chong, A.C.M., Lam, D.C.C., and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solid. Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
  67. Yang, L.Z., Li, Y., Gao, Y. and Pan, E. (2018), "Three-dimensional exact thermo-elastic analysis of multilayered two-dimensional quasicrystal nanoplates", Appl. Math. Model., 63, 203-218. https://doi.org/10.1016/j.apm.2018.06.050.
  68. Yu, Z., Pawel, K., Alla, S., Takashi, S., Takayuki, K., Walter, S. and Ralph, S. (2016), "Superior room-temperature ductility of typically brittle quasicrystals at small sizes", Nat. Commun., 7, 12261. https://doi.org/10.1038/ncomms12261.
  69. Zhang, L., Guo, J.H. and Xing, Y.M. (2021), "Bending analysis of functionally graded one-dimensional hexagonal piezoelectric quasicrystal multilayered simply supported nanoplates based on nonlocal strain gradient theory", Acta Mechanica Solida Sinica, 34(2), 15. https://doi.org/10.1007/s10338-020-00204-w.
  70. Zhang, M., Guo, J.H. and LI, Y.S. (2022), "Bending and vibration of two-dimensional decagonal quasicrystal nanoplates via modifled couple-stress theory", Appl. Math. Mech. (English Ed.), 43(3), 371-388. https://doi.org/10.1007/s10483-022-2818-6.
  71. Zheng, Y.X., Luo, C.X., Liu, H. and Du, C.W. (2021), "The dynamic responses of an infinite plate resting on a poroelastic layered half-space soil medium with imperfect interface to a moving load", ZAMM-J. Appl. Math. Mech./Zeitschrift fur Angewandte Mathematik und Mechanik., 102(1), e202100242. https://doi.org/10.1002/zamm.202100242.