DOI QR코드

DOI QR Code

Numerical study on the influence of embedment footing and vertical load on lateral load sharing in piled raft foundations

  • Sommart Swasdi (Department of Civil Engineering and Environment, Faculty of Engineering, Prince of Songkla University) ;
  • Tanan Chub-Uppakarn (Department of Civil Engineering and Environment, Faculty of Engineering, Prince of Songkla University) ;
  • Thanakorn Chompoorat (Department of Civil Engineering, School of Engineering, University of Phayao) ;
  • Worathep Sae-Long (Department of Civil Engineering, School of Engineering, University of Phayao)
  • 투고 : 2023.04.25
  • 심사 : 2024.02.27
  • 발행 : 2024.03.25

초록

Piled raft foundation has become widely used in the recent years because it can increase bearing capacity of foundation with control settlement. The design for a piled raft in terms vertical load and lateral load need to understands contribution load behavior to raft and pile in piled raft foundation system. The load-bearing behavior of the piled raft, especially concerning lateral loads, is highly complex and challenge to analyze. The complex mechanism of piled rafts can be clarified by using three dimensional (3-D) Finite Element Method (FEM). Therefore, this paper focuses on free-standing head pile group, on-ground piled raft, and embedded raft for the piled raft foundation systems. The lateral resistant of piled raft foundation was investigated in terms of relationship between vertical load, lateral load and displacement, as well as the lateral load sharing of the raft. The results show that both vertical load and raft position significantly impact the lateral load capacity of the piled raft, especially when the vertical load increases and the raft embeds into the soil. On the same condition of vertical settlement and lateral displacement, piled raft experiences a substantial demonstrates a higher capacity for lateral load sharing compared to the on-ground raft. Ultimately, regarding design considerations, the piled raft can reliably support lateral loads while exhibiting behavior within the elastic range, in which it is safe to use.

키워드

과제정보

The authors gratefully acknowledge the financial support from the Faculty of Graduate School, Prince of Songkla University, through the Talent Utilization Type 1 Grant No. TU1-04/2564, Prince of Songkla University (ENG6601098S) and the National Research Council of Thailand and innovation fund and the university of Phayao (no. 231/2567). The authors would like to express sincere gratitude to Prince of Songkla University and Southern Natural Disaster Research Center for providing us with great support and resources in completing this study. We are grateful for their generous funding enabling us to conduct our investigation and complete this research. Furthermore, we extend our deepest thanks to the anonymous reviewers for their meticulous efforts and insightful suggestions, which have significantly enhanced the quality of this paper.

참고문헌

  1. Adeel, M.B., Aaqib, M., Pervaiz, U., Rehman, J.U. and Park, D. (2022), "Numerical response of pile foundations in granular soils subjected to lateral load", Geomech. Eng., 28(1), 11-23. https://doi.org/10.12989/gae.2022.28.1.011.
  2. Amornfa, K., Quang, H.T. and Tuan, T. (2022), "3D numerical analysis of piled raft foundation for Ho Chi Minh City subsoil conditions", Geomech. Eng., 29(2), 183-192. https://doi.org/10.12989/gae.2022.29.2.183.
  3. Azizkandi, A.S., Baziar, M.H. and Yeznabad, A.F. (2018), "3D dynamic finite element analyses and 1 g shaking table tests on seismic performance of connected and nonconnected piled raft foundations", KSCE J. Civil Eng., 22(5), 1750-1762. https://doi.org/10.1007/s12205-017-0379-2.
  4. Balakumar, V., Huang, M., Oh, E. and Balasubramaniam, A.S. (2017), "A critical and comparative study on 2D and 3D analyses of raft and piled raft foundations", Proceedings of the SEAGS 50th Anniversary Symposium, AIT, Bangkok, Thailand.
  5. Chanda, D., Saha, R., Haldar, S., Nayak, B.C. and Kumar, E.V. (2022), "Scaled modeled tests and finite element numerical study on lateral responses of PRF system under VHM loading", Geomech. Geoeng., 1-25. https://doi.org/10.1080/17486025.2022.2048092.
  6. D'Aguiar, S., Modaressi-Farahmand-Razavi, A., Lopez-Caballero, F. and Santos, J. (2008), "Soil-structure interface modeling: Application to pile axial loading", Proceedings of the 12th International Conference of the International Association for Computer Methods and Advances in Geomechanics (IACMAG), Goa, India.
  7. Halder, P., Manna, B. and Sur, A. (2020), "Impact of pile head rigidity on the response of piled raft in sand under pseudo-static loading", Indian Geotech. J., 50(5), 810-824. https://doi.org/10.1007/s40098-020-00408-4.
  8. Haouari, H. and Bouafia, A. (2023), "Single piles under monotonic lateral loads-Full scale tests and numerical modelling", J. Geomech. Geoeng., 1(1), 11-25. https://doi.org/10.38208/jgg.v1i1.441.
  9. Hsueh, C.K., Lin, S.S. and Ong, D.E. (2018), "Finite element analysis to characterize the lateral behaviour of a capped pile group", Geotech. Eng., 49(2), 22-31.
  10. Jamil, I., Ahmad, I., Rehman, A.U., Ahmed, A., Hamza, A. and Ullah, W. (2022), "Response of basement wall in tall buildings foundation under lateral loading", Frontiers of Structural and Civil Engineering, 1-9. https://doi.org/10.1007/s11709-022-0885-2.
  11. Karira, H., Kumar, A., Ali, T.H., Mangnejo, D.A. and Mangi, N. (2022a), "A parametric study of settlement and load transfer mechanism of piled raft due to adjacent excavation using 3D finite element analysis", Geomech. Eng., 30(2), 169-185. https://doi.org/10.12989/gae.2022.30.2.169.
  12. Karira, H., Kumar, A., Ali, T.H., Mangnejo, D.A. and Yaun, L. (2022b), "Numerical investigation of responses of a piled raft to twin excavations: Role of sand density", Geomech. Eng., 31(1), 53-69. https://doi.org/10.12989/gae.2022.31.1.053.
  13. Katzenbach, R. And Leppla, S. (2015), "Realistic Modelling of Soil-Structure Interaction for High-Rise Buildings", Procedia Eng., 117, 162-171. https://doi.org/10.1016/j.proeng.2015.08.137.
  14. Khari, M., Dehghanbandaki, A. and Armaghani, D.J. (2021), "Physical modelling of bending moments in single piles under combined loads in layered soil", Geomech. Eng., 25(5), 373-381. https://doi.org/10.12989/gae.2021.25.5.373.
  15. Knappett, J. and Craig, R.F. (2019), Craig's Soil Mechanics (8th Ed.), CRC press.
  16. Kumar, A., Choudhury, D. and Katzenbach, R. (2016), "Effect of earthquake on combined pile-raft foundation", Int. J. Geomech., 16(5), 04016013. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000637.
  17. Likitlersuang, S., Chheng, C., Surarak, C. and Balasubramaniam, A. (2018), "Strength and stiffness parameters of Bangkok clays for finite element analysis", Geotech. Eng. J. SEAGS & AGSSEA, 49(2), 150-156.
  18. Likitlersuang, S., Surarak, C., Wanatowski, D., Oh, E. and Balasubramaniam, A. (2013a), "Finite element analysis of a deep excavation: A case study from the Bangkok MRT", Soils Found., 53(5), 756-773. https://doi.org/10.1016/j.sandf.2013.08.013.
  19. Likitlersuang, S., Teachavorasinskun, S., Surarak, C., Oh, E. and Balasubramaniam, A. (2013b), "Small strain stiffness and stiffness degradation curve of Bangkok clays", Soils Found., 53(4), 498-509. https://doi.org/10.1016/j.sandf.2013.06.003.
  20. Luo, X., Shi, Y. and Wang, P. (2022), "Three-dimensional stability assessment of slopes with spatially varying undrained shear strength", Geomech. Eng., 31(4), 375-384. https://doi.org/10.12989/gae.2022.31.4.375.
  21. Novak, L.J., Reese, L.C. and Wang, S.-T. (2005), "Analysis of pile-raft foundations with 3D finite-element method", Proceedings of the Structures Congress 2005, Metropolis and Beyond.
  22. Plaxis (2020), Material Models Manual (Version Connect Edition V20.04), Bentley Systems, Incorporated, PA, USA.
  23. Poorjafar, A., Esmaeili-Falak, M. and Katebi, H. (2021), "Pile-soil interaction determined by laterally loaded fixed head pile group", Geomech. Eng., 26(1), 13-25. https://doi.org/10.12989/gae.2021.26.1.013.
  24. Qin, H. and Ma, K. (2021), "Dynamic behaviour difference between high-and low-raft forms of piles in earthquakes", Geotech. Res., 8(3), 85-92. https://doi.org/10.1680/jgere.20.00044.
  25. Shirato, M., Kohno, T. and Nakatani, S. (2009), "Geotechnical criteria for serviceability limit state of horizontally loaded deep foundations", In Geotechnical Risk and Safety, 133-140. CRC Press.
  26. Snyder, J.L. (2004), "Full-scale lateral-load tests of a 3×5 pile group in soft clays and silts", Master of Science; Brigham Young University, Provo, UT 84602, USA.
  27. Soomro, M.A., Mangi, N., Memon, A.H. and Mangnejo, D.A. (2022), "Responses of high-rise building resting on piled raft to adjacent tunnel at different depths relative to piles", Geomech. Eng., 29(1), 25-40. https://doi.org/10.12989/gae.2022.29.1.025.
  28. Surarak, C. (2010), "Geotechnical aspects of the Bangkok MRT blue line project", Ph.D. Dissertation; Griffith University, Australia.
  29. Tomlinson, M. and Woodward, J. (2007), Pile design and construction practice, CRC press.
  30. Vakili, K., Barciaga, T., Lavasan, A. and Schanz, T. (2013), "A practical approach to constitutive models for the analysis of geotechnical problems", Proceedings of the 3rd International Symposium On Computational Geomechanics (ComGeo III), at Krakow, Poland.
  31. Vu, A., Pham, D., Nguyen, T. and He, Y. (2014), "3D finite element analysis on behaviour of piled raft foundations", Appl. Mech. Mater., 580-583, 3-8. https://doi.org/10.4028/www.scientific.net/amm.580-583.3.
  32. Watcharasawe, K., Kitiyodom, P. and Jongpradist, P. (2017), "3-D numerical analysis of consolidation effect on piled raft foundation in Bangkok subsoil condition", Int. J. Geomate, 12(31), 105-111. http://dx.doi.org/10.21660/2017.31.6529.
  33. Yun, J., Han, J. and Kim, D. (2022), "Evaluation of seismic p-y loops of pile-supported structures installed in saturated sand", Geomech. Eng., 30(6), 579-586. https://doi.org/10.12989/gae.2022.30.6.579.
  34. Zhao, C., Lavasan, A. A., Barciaga, T., Zarev, V., Datcheva, M. and Schanz, T. (2015), "Model validation and calibration via back analysis for mechanized tunnel simulations-The Western Scheldt tunnel case", Comput. Geotech., 69, 601-614. https://doi.org/10.1016/j.compgeo.2015.07.003.