DOI QR코드

DOI QR Code

An experimental study on the behavior of the helical tiebacks in the flexible retaining walls

  • 투고 : 2022.09.06
  • 심사 : 2024.02.26
  • 발행 : 2024.03.25

초록

In the implementation of most civil structures, especially underground, deep excavations with a vertical slope are required. Using flexible retaining walls is applied as one of the ways to stabilize vertical holes. Therefore, it is necessary to know the parameters affecting the performance of such walls in reducing their horizontal movement. In this research, by building a suitable laboratory model, the parameters of the amount of flexibility, the embedment depth of the wall, the type and number of tieback in the wall were investigated for 42 static laboratory models. The purpose of this research is to study the flexible retaining wall with helical tieback compared to simple tieback at different heights, which shows the best performance in terms of reducing horizontal displacement in proportion to increasing or decreasing flexibility. On the other hand, one of the parameters affecting the flexibility of the wall, which is its bending stiffness, was extracted by numerical software outputs and studied on the results such as relative flexibility, stiffness, safety and numerical stability of the wall.The results of this study show that among the parameters, in the first place, the effect of the type of tieback is inhibited and in the second place, the ratio of thickness to wall height is known as the most important parameter. the best performance for walls with the helical tiebacks in reducing their horizontal displacement can be economically, flexibly and stability assigned to a wall that tiebacks is in the range of H2/t to H4/t and its flexibility ratio is 2/3.

키워드

참고문헌

  1. Comodromos, E.M., Papadopoulou, M.C. and Konstantinidis, G.K. (2013), "Effects from diaphragm wall installation to surrounding soil and adjacent buildings", Comput. Geotech., 53, 106-121. https://doi.org/10.1016/j.compgeo.2013.05.003.
  2. Das, B.M. (2014), Principles of Foundation Engineering, Global Engineering in the United States of America, 709-760.
  3. Donald, A. and Deardorff P.E. (2018), "Design, installation and testing of helical piles and anchors", Chance Civil Construction. Centralia, MO USA, 2-7. Available at: https://fdocuments.net/embed/v1/design-installation-andtesting-of-helical-piles-anchors.html.
  4. Du, Y.J., Fan, R.D. and Reddy, K.R. (2015), "Impacts of presence of lead contamination in clayey soil-calcium bentonite cutoff wall backfills", Appl. Clay Sci., 108, 111-122. https://doi.org/10.1016/j.clay.2015.02.006.
  5. Duran, L. and De, J.I. (2012), "Lightweight recoverable commercial soil anchor systems", UP Commons. Global access to UPC knowledge.
  6. Dynamic Loading and Fluctuating Water Table on Helical Anchor Performance for Small Wind Tower Foundations", J. Perform. Constr., 23(4), 251-261. https://doi.org/10.1061/_ASCE_CF.1943-5509.0000013.
  7. Ertugrul, O.L. and Trandafir, A.C. (2013) Lateral earth pressures on flexible cantilever retaining walls with deformable geofoam inclusions. Eng. Geol., 158, 23-33. https://doi.org/10.1016/j.enggeo.2013.03.001.
  8. Ertugrul, O.L., Trandafir, A.C. and Ozkan, M.Y. (2017), "Reduction of dynamic earth loads on flexible cantilever retaining walls by deformable geofoam panels", Soil Dyn. Earthq. Eng., 92, 462-471. https://doi.org/10.1016/j.soildyn.2016.10.011.
  9. FHWA (2015), Geotechnical Engineering Circular No.7 Soil Nail Walls-Reference Manual, Soil Nail Walls Ref. Man., no. October, 425, [Online]. Available at: https://www.fhwa.dot.gov/engineering/geotech/pubs/nhi14007.pdf.
  10. Ghanbari, A. and Ahmadabadi, M. (2010), "Active earth pressure on inclined retaining walls in static and pseudo-static conditions", Int. J. Civ. Eng., 8(2), 159-173.
  11. Han, S., Gong, J. and Zhang, Y. (2016), "Earth pressure of layered soil on retaining structures", Soil Dyn. Earthq. Eng., 83, 33-52. https://doi.org/10.1016/j.soildyn.2015.12.015.
  12. Hanna, T.H. and Kurdi, I.I. (1974), "Studies on anchored flexible retaining walls in sand", J. Geotech. Geoenviron. Eng., 100, e10854. https://doi.org/10.1061/AJGEB6.0000104.
  13. Hanna, T.H. and Matallana, G.A. (1970), "The behavior of tiedback retaining walls", Can. Geotech. J., 7(4), 372-396. https://doi.org/10.1139/t70-050.
  14. Huang, C.C. and Luo, W.M. (2009), "Behavior of soil retaining walls on deformable foundations", Eng. Geol., 105(1), 1-10. https://doi.org/10.1016/j.enggeo.2009.01.003.
  15. Ibrahim, K.M.H.I. (2015), "Seismic displacement of gravity retaining walls", HBRC J., 11(2), 224-230. https://doi.org/10.1016/j.hbrcj.2014.03.006.
  16. Ilies, N.M., Farcas, V.S. and Pop, M. (2015), "Design optimization of diaphragm walls", Procedia Technol., 19, 357-362. https://doi.org/10.1016/j.protcy.2015.02.051.
  17. James, E.L. and Phillips, S.H. (1971), "Movement of a tied diaphragm retaining wall during excavation", Ground Eng., 4, 14-16.
  18. Johnston, E.R., Beer, F.P. and Eisenberg, E.R. (2007), Vector Mechanics for Engineers, 470-555.
  19. Korini, O., Bost, M. and Rajot, J.P. (2021), "The influence of geosynthetics design on the behavior of reinforced soil embankments subjected to rockfall impacts", Eng. Geol., 286(5), e106054. https://doi.org/10.1016/j.enggeo.2021.106054.
  20. Lany, B.S.A. and Deng, L. (2018), "Effects of inter-helix spacing and short-term soil setup on the behaviour of axially loaded helical piles in cohesive soil", Soils Found, 59, 337-350. https://doi.org/10.1016/j.sandf.2018.12.002.
  21. Liu, T.K. and Dugan, J.P. (1972), An Instrumented Tied-Back Deep Excavation, in Performance of Earth and Earth-Supported Structures. Asce, New York.
  22. Mahmoudi-Mehrizi, M.E., Daghigh, Y. and Nazariafshar, J. (2020), "Physical Modeling of the Helical Anchor Walls' Behavior Using Particle Image Velocity", Indian Geo. J., 50, 587-603. https://doi.org/10.1007/s40098-019-00397-z.
  23. Mahmoudi, M.E. and Jalali, M. (2020), "Comparing the performance of helical anchors and direct-embedded plate anchors in cohesionless soil for top-down retaining walls stabilization: an experimental study", J. GeoEng., 15(1), 31-45. httsp://doi.org/10.6310/jog.202003_15(1).3.
  24. Martinez, E., Patino, H. and Galindo, R. (2017), "Evaluation of the risk of sudden failure of a cohesive soil subjected to cyclic loading", Soil Dyn. Earthq. Eng., 92, 419-432. https://doi.org/10.1016/j.soildyn.2016.10.017.
  25. Mittal, S. and Mukherjee, S. (2013), "Vertical uplift capacity of a group of helical screw anchors in sand", Indian Geo, J., 43(3), 238-250. https://doi.org/10.1007/s40098-013-0055-5.
  26. Ola, S.A. (1989), "Stabilization of lateritic soils by extensible fibre reinforcement", Eng. Geol., 26(2), 125-140. https://doi.org/10.1016/0013-7952(89)90002-1.
  27. Perko, H. (1999), Summary of earth retaining methods utilizing helical anchors, Magnum Piering Technical Reference Guide, Engineering Analysis, Section 3. Magnum Piering, Inc. Cincinnati, OH.
  28. Plant, G.W., Priest, D.R. and Landby, A.R. (1980), "The asphaltic concrete lining of a reservoir in the Eastern Transvaal", Civ. Eng. South Africa, 22(9), 243-249. https://hdl.handle.net/10520/EJC24826. 10520/EJC24826
  29. Rajapakse, R.A. (2016), Geotechnical engineering calculations and rules of thumb, Butterworth-Heinemann, New York. New Jersey, 139-165. https://doi.org/10.1016/C2015-0-01445-9.
  30. Rawat, S. and Gupta, A.K. (2017), "Numerical modelling of pullout of helical soil nail", J. Rock Mech. Geotech. Eng., 9, 648-658. https://doi.org/10.1016/j.jrmge.2017.01.007.
  31. Ren, F., Huang, Q. and Wang, G. (2020), "Shaking table tests on reinforced soil retaining walls subjected to the combined effects of rainfall and earthquakes", Eng. Geol., 267, e105475. https://doi.org/10.1016/j.enggeo.2020.105475.
  32. Rowe, P.W. (1952), "Anchored sheet pile walls", Proceedings Institute of Civil Engineers, 27-70.
  33. Rowe, P.W. (1957), "Sheet pile walls in clay", Proceedings Institute of Civil Engineers, 629-654.
  34. Saba, H.R. (2002), "Investigating the nonlinear behavior of intruder walls under different loading conditions and making a suitable laboratory model", Ph.D. Dissertation, Amirkabir University of Technology, Iran.
  35. Sabermahani, M., Ghalandarzadeh, A. and Fakher, A. (2008), "Experimental study on seismic deformation modes of reinforced-soil walls", Geotext. Geomembranes, 27, 121-136. https://doi.org/10.1016/j.geotexmem.2008.09.009.
  36. Shabani, R.M.J., Rowshanzamir, M.A. and Eslami, H.A. (2016), "Evaluation of performance reinforced soil retaining wall with oblique reinforcements, slope facing and reinforcements anchor", Modares Civil Eng. J., 16(1), 55-68.
  37. Stanier, S.A., Black, J.A. and Hird, C.C. (2015), "Modelling helical screw piles in soft clay and design implications", Proc. Inst. Civ. Eng. Geotech. Eng., 167(5), 447-460. https://doi.org/10.1680/geng.13.00021.
  38. Stephenson, R.W. (2003), "Design and installation of torque anchors for tiebacks and foundations", Missouri University of Science and Technology.
  39. Stipho, A.S. (1988), "Model test of reinforced earth retaining wall", Proceedings of the 2nd International Conference on Case Histories in Geotechnical Engineering, 6(76), 2-4.
  40. Stramondo, S., Trasatti, E. and Albano, M. (2016), "Uncovering deformation processes from surface displacements", J. Geodyn., 102, 58-82. https://doi.org/10.1016/j.jog.2016.08.001.
  41. Tang, C. and Phoon, K.K. (2016), "Model uncertainty of cylindrical shear method for calculating the uplift capacity of helical anchors in clay", Eng. Geol., 207, 14-23. https://doi.org/10.1016/j.enggeo.2016.04.009.
  42. Truty, A.A. (2016), "Influence of diaphragm wall installation in over-consolidated sandy clays on in situ stress disturbance and resulting wall deformations", Ann. Warsaw Univ. Life Sci. L. Reclam., 48(3), 243-253. https://doi.org/10.1515/sggw-2016-0019.
  43. Tsuha, C.H.C. and Aoki, N. (2010), "Relationship between installation torque and uplift capacity of deep helical piles in sand", Can. Geo. J., 47(6), 635-647. https://doi.org/10.1139/T09-128.
  44. Wang, D., Merifield, R.S. and Gaudin, C. (2013), "Uplift behaviour of helical anchors in clay", Can. Geotech. J., 50, 575-584. https://dx.doi.org/10.1139/cgj-2012-0350.
  45. Wang, L.J., Liu, S.H. and Zhou, B. (2015), "Experimental study on the inclusion of soilbags in retaining walls constructed in expansive soils", Geotext. Geomembranes, 43(1), 89-96. https://doi.org/10.1016/j.geotexmem.2014.11.002.
  46. Yajnheswaran, B., Akshay, P.R. and Rajasekaran, F. (2015), "Effect of stiffness on performance of diaphragm wall", Procedia Eng., 116, 343-349. https://doi.org/10.1016/j.proeng.2015.08.305.
  47. Young, J. (2012), "Uplift capacity and displacement of helical anchors in cohesive soil", Master Thesis, Oregon State University, USA.
  48. Yu, X., Kong, X. and Zou, D. (2015), "Linear elastic and plasticdamage analyses of a concrete cut-off wall constructed in deep overburden", Comput. Geotech., 69, 462-473. https://doi.org/10.1016/j.compgeo.2015.05.01.