DOI QR코드

DOI QR Code

Acoustic emission characteristics during damage-zone formation around a circular opening

  • Jong-Won Lee (Research Institute of Industrial Technology, Pusan National University) ;
  • Eui-Seob Park (Deep Subsurface Storage & Disposal Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Junhyung Choi (Deep Subsurface Storage & Disposal Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Tae-Min Oh (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Min-Jun Kim (Deep Subsurface Storage & Disposal Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • Received : 2023.11.28
  • Accepted : 2024.02.24
  • Published : 2024.03.10

Abstract

Underground openings significantly affect the mechanical stability of underground spaces and create damaged zones. This study investigated the acoustic emission (AE) characteristics associated with the formation of damaged zones around circular openings. Uniaxial compression experiments were conducted on three types of rock specimens, namely, granite (GN-1 and GN-2), gabbro (GB), and slate (SL), containing a circular opening. AE and digital image correlation (DIC) techniques were used to monitor and evaluate the damaged zones near the circular openings. The AE characteristics were evaluated using AE parameters, including count, energy, amplitude, average frequency, and RA value. The DIC results revealed that the estimated diameters of the damaged zones of GN-1, GN-2, GB, and SL were 1.66D, 1.53D, 1.49D, and 1.9D, respectively. The average displacements at the surface of the damaged zones for these specimens were 0.814, 0.786, 0.661, and 0.673 mm, respectively, thus demonstrating a strong correlation with Young's modulus. The AE analysis with DIC revealed that tensile failure occurred in the direction parallel to the maximum compression axis as the load increased. Thus, this study provides fundamental data for a comprehensive analysis of damaged zones in underground openings and will facilitate the optimization of rock engineering projects and safety assessments thereof.

Keywords

Acknowledgement

This work was supported by the Basic Research Project of the Korea Institute of Geoscience and Mineral Resources (KIGAM, GP2020-010) funded by the Ministry of Science and ICT, Institute for Korea Spent Nuclear Fuel (iKSNF), and Korea Foundation of Nuclear Safety (KOFONS) grant funded by the Korean government (Nuclear Safety and Security Commission, NSSC) [grant number RS-2021-KN066110]. This research was also conducted as part of the Brain Korea 21 FOUR Project at the Education & Research Center for the Infrastructure of the Smart Ocean City (i-SOC Center).

References

  1. AEwin (2014), Software Users' Manual, MISTRAS Group Inc., Benicia, CA, USA.
  2. Aliabadian, Z., Zhao, G.F. and Russell, A.R. (2019), "Failure, crack initiation and the tensile strength of transversely isotropic rock using the Brazilian test", Int. J. Rock Mech. Min. Sci., 122, 104073. https://doi.org/10.1016/j.ijrmms.2019.104073.
  3. ASTM D2845-08 (2008), Standard test method for laboratory determination of pulse velocities and ultrasonic elastic constants of rock, ASTM International, West Conshohocken, PA, USA.
  4. ASTM D7012-10 (2010), Standard test method for compressive strength and elastic moduli of intact rock core specimens under varying states of stress and temperatures, ASTM International, West Conshohocken, PA, USA.
  5. ASTM D-7063 (2011), Standard test method for effective porosity and effective air voids of compacted bituminous paving mixture samples, ASTM International, West Conshohocken, PA, USA.
  6. Cao, A., Jing, G., Ding, Y.L. and Liu, S. (2019), "Mining-induced static and dynamic loading rate effect on rock damage and acoustic emission characteristic under uniaxial compression", Saf. Sci., 116, 86-96. https://doi.org/10.1016/j.ssci.2019.03.003.
  7. Du, K., Li, X., Tao, M. and Wang, S. (2020), "Experimental study on acoustic emission (AE) characteristics and crack classification during rock fracture in several basic lab tests", Int. J. Rock Mech. Min. Sci., 133, 104411. https://doi.org/10.1016/j.ijrmms.2020.104411.
  8. Du, K., Sun, Y., Zhou, J., Khandelwal, M. and Gong, F. (2022), "Mineral composition and grain size effects on the fracture and acoustic emission (AE) characteristics of rocks under compressive and tensile stress", Rock Mech. Rock Eng., 55, 6445-6474. https://doi.org/10.1007/s00603-022-02980-y.
  9. Deer, W.A., Howie, R.A. and Zussman, J. (2013), An introduction to the rock-forming minerals, 3rd Ed., Longman, Harlow, UK.
  10. Dong, L., Yang, L., Chen, Y. (2022), "Acoustic emission location accuracy and spatial evolution characteristics of granite fracture in complex stress conditions", Rock Mech. Rock Eng., 56(6), 1-18. https://doi.org/10.1007/s00603-022-03124-y.
  11. Fakhimi, A., Carvalho, F., Ishida, T. and Labuz, J.F. (2002), "Simulation of failure around a circular opening in rock", Int. J. Rock Mech. Min. Sci., 39(4), 507-515. https://doi.org/10.1016/S1365-1609(02)00041-2.
  12. Gong, Y., Song, Z., He, M., Gong, W. and Ren, F. (2017), "Precursory waves and eigenfrequencies identified from acoustic emission data based on singular spectrum analysis and laboratory rock-burst experiments", Int. J. Rock Mech. Min. Sci., 91, 155-169. https://doi.org/10.1016/j.ijrmms.2016.11.020.
  13. Grosse, C.U. and Ohtsu, M. (2008), Acoustic emission testing, Springer, Heidelberg, Germany.
  14. Guo, W.Y., Zhang, W., Zhang, C.G. and Chen, Y. (2022a), "Experimental study on the deformation localisation and acoustic emission characteristics of coal in Brazilian splitting tests", Sci. Rep., 12, 6348. https://doi.org/10.1038/s41598-022-10332-7.
  15. Guo, T.Y. and Zhao, Q. (2022b), "Acoustic emission characteristics during the microcracking processes of granite, marble and sandstone under mode 1 loading", Rock Mech. Rock Eng., 55, 5467-5489. https://doi.org/10.1007/s00603-022-02937-1.
  16. Hampton, J., Gutierrez, M., Matzar, L., Hu, D. and Frash, L. (2018), "Acoustic emission characterization of microcracking in laboratory-scale hydraulic fracturing tests", J. Rock Mech. Geotech. Eng., 10, 805-817. https://doi.org/10.1016/j.jrmge.2018.03.007.
  17. Hedayat, A. and Weems, J. (2019), "The elasto-plastic response of deep tunnels with damaged zone and gravity effects", Rock Mech. Rock Eng., 52, 5123-5135. https://doi.org/10.1007/s00603-019-01834-4.
  18. Hellier, C.J. (2013), Handbook of nondestructive evaluation, McGraw-Hill Education, New York, NY, USA.
  19. Ishida, T., Labuz, J.F., Manthei, G., Meredith, P.G., Nasseri, M.H.B., Shin, K., Yokoyama, T. and Zang, A. (2017), "ISRM suggested method for laboratory acoustic emission monitoring", Rock Mech. Rock Eng., 50, 665-674. https://doi.org/10.1007/s00603-016-1165-z.
  20. Jin, P., Wang, E. and Song, D. (2017), "Study on correlation of acoustic emission and plastic strain based on coal-rock damage theory", Geomech. Eng., 12(4), 627-637. https://doi.org/10.12989/gae.2017.12.4.627.
  21. Kramadibrata, S., Simangunsong, G.M., Matsui, K. and Shimada, H. (2011), "Role of acoustic emission for solving rock engineering problems in Indonesian underground mining", Rock Mech. Rock Eng., 44, 281-289. https://doi.org/10.1007/s00603-010-0125-2.
  22. Lacidogna, G., Piana, G. and Carpinteri, A. (2017), "Acoustic emission and modal frequency variation in concrete specimens under four-point bending", Appl. Sci., 7(4), 339. https://doi.org/10.3390/app7040339.
  23. Lee, J.W., Kim, H. and Oh, T.M. (2020), "Acoustic emission characteristics during uniaxial compressive loading for concrete specimens according to sand content ratio", KSCE J. Civ. Eng., 24(9), 2808-2823. https://doi.org/10.1007/s12205-020-5697-0.
  24. Li, L.R., Deng, J.H., Zheng, L. and Liu, J.F. (2017), "Dominant frequency characteristics of acoustic emissions in white marble during direct tensile tests" Rock Mech. Rock Eng., 50, 1337-1346. https://doi.org/10.1007/s00603-016-1162-2.
  25. Li, J., Shen, C., He, X., Zheng, X. and Yuan, J. (2022a), "Numerical solution for circular tunnel excavated in strain-softening rock masses considering damaged zone", Sci. Rep., 12, 4465. https://doi.org/10.1038/s41598-022-08531-3.
  26. Li, C.J., Lou, P.J. and Xu, Y. (2022b), "Damage characterization of hard-brittle rocks under cyclic loading based on energy dissipation and acoustic emission characteristics", Geomech. Eng., 31(4), 365-373. https://doi.org/10.12989/.2022.31.4.365.
  27. Li, S., Yang, D., Huang, Z., Gu, Q. and Zhao, K. (2022c), "Acoustic emission characteristics and failure mode analysis of rock failure under complex stress state", Theor. Appl. Fract. Mec., 122, 103666. https://doi.org/10.1016/j.tafmec.2022.103666.
  28. Liu, J.P., Li, Y.H., Xu, S.D., Xu, S., Jin, C.Y. and Liu, Z.S. (2015), "Moment tensor analysis of acoustic emission for cracking mechanisms in rock with a pre-cut circular hole under uniaxial compression", Eng. Frac. Mech., 135, 206-218. https://doi.org/10.1016/j.engfracmech.2015.01.006.
  29. Liu, X., Liu, Z., Li, X., Gong, F. and Du, K. (2020), "Experimental study on the effect of strain rate on rock acoustic emission characteristics", Int. J. Rock Mech. Min. Sci., 133, 104420. https://doi.org/10.1016/j.ijrmms.2020.104420.
  30. Liu, B., Zhao, Y., Zhang, C., Zhou, J., Li, Y. and Sun, Z. (2021), "Characteristic strength and acoustic emission properties of weakly cemented sandstone at different depths under uniaxial compression", Int. J. Coal Sci. Technol., 8, 1288-1301. https://doi.org/10.1007/s40789-021-00462-0.
  31. Lockner, D. (1993), "The role of acoustic emission in the study of rock fracture", Int. J. Rock Mech. Min. Sci. Geomec. Abstr., 30(7), 883-899. https://doi.org/10.1016/0148-9062(93)90041-B.
  32. Ma, J., Wu, S., Zhang, X.P. and Gan, Y. (2020), "Modeling acoustic emission in the Brazilian test using moment tensor inversion", Comput. Geotech., 123, 103567. https://doi.org/10.1016/j.compgeo.2020.103567.
  33. Marshak, S. (2019), Essentials of geology, 6th Ed., W.W. Norton & Company, New York, NY, USA.
  34. Miao, S., Pan, P.Z., Konicek, P., Yu, P. and Liu, K. (2021), "Rock damage and fracturing induced by high static stress and slightly dynamic disturbance with acoustic emission and digital image correlation techniques", J. Rock Mech. Geotech. Eng., 13, 1002-1019. https://doi.org/10.1016/j.jrmge.2021.05.001.
  35. Moradian, Z., Einstein, H.H. and Ballivy, G. (2016), "Detection of cracking levels in brittle rocks by parametric analysis of the acoustic emission signals", Rock Mech. Rock Eng., 49, 785-800. https://doi.org/10.1007/s00603-015-0775-1.
  36. Oh, T.M., Kim, M.K., Lee, J.W., Kim, H. and Kim, M.J. (2020), "Experimental investigation on effective distances of acoustic emission in concrete structures", Appl. Sci., 10(17), 6051. https://doi.org/10.3390/app10176051.
  37. Park, Y.J. and Kim, K.H. (2006), "Analytical solution for a circular opening in an elastic-brittle-plastic rock", Int. J. Rock Mech. Min. Sci., 43(4), 616-622. https://doi.org/10.1016/j.ijrmms.2005.11.004.
  38. Perras, M.A. and Diederichs, M.S. (2016), "Predicting excavation damage zone depths in brittle rocks", J. Rock Mech. Geotech. Eng., 8(1), 60-74. https://doi.org/10.1016/j.jrmge.2015.11.004.
  39. Petruzalek, M., Lokajicek, T., Svitek, T., Jechumtalova, Z., Kolar, P. and Sileny, J. (2019), "Fracturing of migmatite monitored by acoustic emission and ultrasonic sounding", Rock Mech. Rock Eng., 52, 47-59. https://doi.org/10.1007/s00603-018-1590-2.
  40. Sun, Y., Yu, F. and Lv, J. (2023), "Experimental study on acoustic emission characteristics of granite and sandstone under uniaxial compression", Geofluids, 2023, 2944871. https://doi.org/10.1155/2023/2944871.
  41. Tang, J.H., Chen, X.D. and Dai, F. (2020), "Experimental study on the crack propagation and acoustic emission characteristics of notched rock beams under post-peak cyclic loading", Eng. Fract. Mech., 226, 106890. https://doi.org/10.1016/j.engfracmech.2020.106890.
  42. Wang, F. and Qian, D. (2018), "Difference solution for a circular tunnel excavated in strain-softening rock mass considering decayed confinement", Tunn. Undergr. Sp. Tech., 82, 66-81. https://doi.org/10.1016/j.tust.2018.08.001.
  43. Wang, Z., Wang, J., Yang, S., Li, L. and Li, M. (2020), "Failure behaviour and acoustic emission characteristics of different rocks under uniaxial compression", J. Geophys. Eng., 17(1), 76-88. https://doi.org/10.1093/jge/gxz092.
  44. Weng, L., Li, X., Taheri, A., Wu, Q. and Xie, X. (2018), "Fracture evolution around a cavity in brittle rock under uniaxial compression and coupled static-dynamic loads", Rock Mech. Rock Eng., 51, 531-545. https://doi.org/10.1007/s00603-017-1343-7.
  45. Wu, H., Ma, D., Spearing, A.J.S. and Zhao, G. (2021), "Fracture response and mechanisms of brittle rock with different numbers of openings under uniaxial loading", Geomech. Eng., 25(6), 481-493. https://doi.org/10.12989/gae.2021.25.6.481.
  46. Yoon, S., Jeong, H., Lee, H.L., Kim, T., Hong, C.H. and Kim, J.S. (2023), "Evaluation of Uniaxial Compression and Point Load Tests for Compacted Bentonites", Acta Geotech., 18, 4633-4644. https://doi.org/10.1007/s11440-023-01844-1.
  47. Zha, E., Zhang, Z., Zhang, R., Wu, S., Li, C., Ren, L., Gao, M. and Zhou, J. (2021), "Long-term mechanical and acoustic emission characteristics of creep in deeply buried jinping marble considering excavation disturbance", Int. J. Rock Mech. Min. Sci., 139, 104603. https://doi.org/10.1016/j.ijrmms.2020.104603.
  48. Zhang, Z., Hu, L., Liu, T. and Zheng, H. (2021), "Cluster and information entropy analysis of acoustic emission during rock failure process", Geomech. Eng., 25(2), 135-142. https://doi.org/10.12989/gae.2021.25.2.135.
  49. Zhu, Q., Li, D., Han, Z., Li, X. and Zhou, Z. (2019), "Mechanical properties and fracture evolution of sandstone specimens containing different inclusions under uniaxial compression", Int. J. Rock Mech. Min. Sci., 115, 33-47. https://doi.org/10.1016/j.ijrmms.2019.01.010.