DOI QR코드

DOI QR Code

Effect of the support pressure modes on face stability during shield tunneling

  • Dalong Jin (Key Laboratory of Urban Underground Engineering of Ministry of Education, Beijing Jiaotong University) ;
  • Yinzun Yang (Key Laboratory of Urban Underground Engineering of Ministry of Education, Beijing Jiaotong University) ;
  • Rui Zhang (Jinan Rail Transit Group Co, Ltd) ;
  • Dajun Yuan (Key Laboratory of Urban Underground Engineering of Ministry of Education, Beijing Jiaotong University) ;
  • Kang Zhang (Jinan Rail Transit Group Co, Ltd)
  • 투고 : 2022.01.30
  • 심사 : 2024.02.05
  • 발행 : 2024.03.10

초록

Shield tunneling method is widely used to build tunnels in complex geological environment. Stability control of tunnel face is the key to the safety of projects. To improve the excavation efficiency or perform equipment maintenance, the excavation chamber sometimes is not fully filled with support medium, which can reduce the load and increase tunneling speed while easily lead to ground collapse. Due to the high risk of the face failure under non-fully support mode, the tunnel face stability should be carefully evaluated. Whether compressive air is required for compensation and how much air pressure should be provided need to be determined accurately. Based on the upper bound theorem of limit analysis, a non-fully support rotational failure model is developed in this study. The failure mechanism of the model is verified by numerical simulation. It shows that increasing the density of supporting medium could significantly improve the stability of tunnel face while the increase of tunnel diameter would be unfavorable for the face stability. The critical support ratio is used to evaluate the face failure under the nonfully support mode, which could be an important index to determine whether the specific unsupported height could be allowed during shield tunneling. To avoid of face failure under the non-fully support mode, several charts are provided for the assessment of compressed air pressure, which could help engineers to determine the required air pressure for face stability.

키워드

과제정보

The authors gratefully acknowledge the financial support from the Fundamental Research Funds for the Central Universities under Grant No. 2021RC231 and the National Natural Science Foundation of China under Grant No. 52008021.

참고문헌

  1. Chen, R.P., Li, J., Kong, L.G. and Tang, L.J. (2013), "Experimental study on face instability of shield tunnel in sand", Tunn. Undergr. Sp. Tech., 33, 12-21. https://doi.org/10.1016/j.tust.2012.08.001.
  2. Chen, R., Yin, X., Tang, L. and Chen, Y. (2018), "Centrifugal model tests on face failure of earth pressure balance shield induced by steady state seepage in saturated sandy silt ground", Tunn. Undergr. Sp. Tech., 81, 315-325. https://doi.org/10.1016/j.tust.2018.06.031.
  3. Chen, W.F. (1975), Limit analysis and soil plasticity, Elsevier, Amsterdam.
  4. Eberhardt, E. (2001), "Numerical modelling of three-dimension stress rotation ahead of an advancing tunnel face", Int. J. Rock Mech. Min. Sci., 38(4), 499-518. https://doi.org/10.1016/S1365-1609(01)00017-X.
  5. Idinger, G., Aklik, P., Wu, W. and Borja, R.I. (2011), "Centrifuge model test on the face stability of shallow tunnel", Acta Geotechnica, 6(2), 105-117. https://doi.org/10.1007/s11440-011-0139-2.
  6. Jin, D., Zhang, Z. and Yuan, D. (2021), "Effect of dynamic cutterhead on face stability in epb shield tunneling", Tunn. Undergr. Sp. Tech., 110(1), 103827. https://doi.org/10.1016/j.tust.2021.103827.
  7. Ji, X., Ni, P., Barla, M., Zhao, W. and Mei, G. (2018), "Earth pressure on shield excavation face for pipe jacking considering arching effect", Tunn. Undergr. Sp. Tech., 72, 17-27. https://doi.org/10.1016/j.tust.2017.11.010.
  8. Juneja, A., Hegde, A., Lee, F.H. and Yeo, C.H. (2010), "Centrifuge modelling of tunnel face reinforcement using forepoling", Tunn. Undergr. Sp. Tech., 25(4), 377-381. https://doi.org/10.1016/j.tust.2010.01.013.
  9. Kirsch, A. (2010), "Experimental investigation of the face stability of shallow tunnels in sand", Acta Geotechnica, 5(1), 43-62. https://doi.org/10.1007/s11440-010-0110-7.
  10. Li, P., Chen, K., Wang, F. and Li, Z. (2019), "An upper-bound analytical model of blow-out for a shallow tunnel in sand considering the partial failure within the face", Tunn. Undergr. Sp. Tech., 91, 102989. 1-102989.12. https://doi.org/10.1016/j.tust.2019.05.019.
  11. Lu, P., Yuan, D., Chen, J., Jin, D., Wu, J. and Luo, W. (2021), "Face stability analysis of slurry shield tunnels in rock-soil interface mixed ground", KSCE J. Civil Eng., 25(6), 2250-2260. https://doi.org/10.1007/s12205-021-1254-8.
  12. Liu, W., Zhao, Y., Shi, P., Li, J. and Gan, P. (2018), "Face stability analysis of shield-driven tunnels shallowly buried in dry sand using 1-g large-scale model tests", Acta Geotechnica, 13(3), 693-705. https://doi.org/10.1007/s11440-017-0607-4.
  13. Liu, X.Y., Fang, H.Y., Wang, F.M. and Yuan, D.J. (2021), "Horizontal trap-door investigation on face failure zone of shield tunneling in sands", J. Central South Univ., 28(3), 866-881. https://doi.org/ 10.1007/S11771-021-4632-Y.
  14. Mollon, G., Dias, D. and Soubra, A.H. (2009), "Probabilistic analysis of circular tunnels in homogeneous soil using response surface methodology", J. Geotech. Geoenviron. Eng., 135(9), 1314-1325. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000060.
  15. Mollon, G., Dias, D. and Soubra, A.H. (2011), "Rotational failure mechanisms for the face stability analysis of tunnels driven by a pressurized shield", Int. J. Numer. Anal. Method. Geomech., 35(12), 1363-1388. https://doi.org/10.1002/nag.962.
  16. Nagel, F. and Meschke, G. (2010), "An elasto-plastic three phase model for partially saturated soil for the finite element simulation of compressed air support in tunneling", Int. J. Numer. Anal. Method. Geomech., 34(6), 605-625. https://doi.org/10.1002/nag.828.
  17. Paternesi, A., Schweiger, H.F. and Scarpelli, G. (2017), "Numerical analyses of stability and deformation behavior of reinforced and unreinforced tunnel faces", Comput. Geotech., 88, 256-266. https://doi.org/10.1016/j.compgeo.2017.04.002.
  18. Pan, Q. and Dias, D. (2016), "The effect of pore water pressure on tunnel face stability", Int. J. Numer. Anal. Method. Geomech., 40(15), 2123-2136. https://doi.org/10.1002/nag.2528.
  19. Perazzelli, P., Leone, T. and Anagnostou, G. (2014), "Tunnel face stability under seepage flow conditions", Tunn. Undergr. Sp. Tech., 43, 459-469. https://doi.org/10.1016/j.tust.2014.03.001.
  20. Qarmout, M., Konig, D., Gussmann, P., Thewes, M. and Schanz, T. (2019), "Tunnel face stability analysis using Kinematical Element Method", Tunn. Undergr. Sp. Tech., 85, 354-367. https://doi.org/10.1016/j.tust.2018.11.024.
  21. Subrin, D. and Wong, H. (2002), "Tunnel face stability in frictional material: a new 3D failure mechanism", Comptes Rendus Mecanique, 330(7), 513-519. https://doi.org/10.1016/S1631-0721(02)01491-2.
  22. Sterpi, D. and Cividini, A. (2004), "A physical and numerical investigation on the stability of shallow tunnels in strain softening media", Rock Mech. Rock Eng., 37(4), 277-298. https://doi.org/10.1007/s00603-003-0021-0.
  23. Tang, X.W., Liu, W., Albers, B. and Savidis, S. (2014), "Upper bound analysis of tunnel face stability in layered soils", Acta Geotechnica, 9(4), 661-671. https://doi.org/10.1007/s11440-013-0256-1.
  24. Tian, Y., Du, S., Sun, W. and Cheng, K. (2019), "Study on tunneling parameters and surface subsidence of large-diameter slurry shield based on half-chamber air pressure method", J. Railway Sci. Eng., 16(10), 2530-2537. https://doi.org/10.19713/j.cnki.43-1423/u.2019.10.020.
  25. Wang, T., Yuan, D., Jin, D. and Li, X. (2021), "Experimental study on slurry-induced fracturing during shield tunneling", Front. Struct. Civil Eng., 15(2), 333-345. https://doi.org/10.1007/s11709-021-0718-8.
  26. Wang, H., Huang, M., Lv, X. and Zhou, W. (2013), "Upper-bound limit analysis of stability of shield tunnel face considering seepage", Chinese J. Geotech. Eng., 35(4), 1696-1704. https://doi.org/CNKI:SUN:YTGC.0.2013-09-020.
  27. Yang, X.L. and Huang, F. (2011), "Collapse mechanism of shallow tunnel based on nonlinear Hoek-Brown failure criterion", Tunn. Undergr. Sp. Tech., 26(6), 686-691. https://doi.org/10.1016/j.tust.2011.05.008.
  28. Yuan, D., Shen, X., Liu, X. and Wu, J. (2017), "Research on excavation face stability of slurry shield tunneling", China J. Highway Transport, 30(8), 24-37. https://doi.org/10.3969/j.issn.1001-7372.2017.08.003.
  29. Yu, L., Zhang, D., Fang, Q., Cao, L., Zhang, Y. and Xu, T. (2020), "Face stability of shallow tunnelling in sandy soil considering unsupported length", Tunn. Undergr. Sp. Tech., 102, 103445. https://doi.org/10.1016/j.tust.2020.103445.
  30. Zhang, Z.X., Hu, X.Y. and Scott, K.D. (2011), "A discrete numerical approach for modeling face stability in slurry shield tunnelling in soft soils", Comput. Geotech., 38(1), 94-104. https://doi.org/10.1016/j.compgeo.2010.10.011.
  31. Zhang, Z., Huang, M., Zhang, C., Jiang, K. and Bai, Q. (2020), "Analytical prediction of tunneling-induced ground movements and liner deformation in saturated soils considering influences of shield air pressure", Appl. Math. Model., 78, 749-772. https://doi.org/10.1016/j.apm.2019.10.025.
  32. Zhu, W.B. and Ju, S.J. (2006), Shield tunneling technology in mixed face ground conditions, China science and technology press, Beijing.
  33. Zhu, W., Qian, Y., Wang, L., Hu, J., Xing, H. and Lu, K. (2020), "Problems and measures of earth pressure balance shield during construction with the unfilled chamber", China J. Highway Transport, 33(12), 224-234. https://doi.org/10.1016/10.19721/j.cnki.1001-7372.2020.12.018.
  34. Zou, J., Chen, G. and Qian, Z. (2019), "Tunnel face stability in cohesion-frictional soils considering the soil arching effect by improved failure models", Comput. Geotech., 106, 1-17. https://doi.org/10.1016/j.compgeo.2018.10.014.