DOI QR코드

DOI QR Code

A quasi-3D nonlocal theory for free vibration analysis of functionally graded sandwich nanobeams on elastic foundations

  • Mofareh Hassan Ghazwani (Mechanical Engineering Department, Faculty of Engineering, Jazan University) ;
  • Ali Alnujaie (Mechanical Engineering Department, Faculty of Engineering, Jazan University) ;
  • Pham Van Vinh (Department of Solid Mechanics, Le Quy Don Technical University) ;
  • Abdelouahed Tounsi (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals)
  • 투고 : 2023.08.05
  • 심사 : 2023.09.28
  • 발행 : 2024.03.25

초록

The main aims of this study are to develop a new nonlocal quasi-3D theory for the free vibration behaviors of the functionally graded sandwich nanobeams. The sandwich beams consist of a ceramic core and two functionally graded material layers resting on elastic foundations. The two layers, linear spring stiffness and shear layer, are used to model the effects of the elastic foundations. The size-effect is considered using nonlocal elasticity theory. The governing equations of the motion of the functionally graded sandwich nanobeams are obtained via Hamilton's principle in combination with nonlocal elasticity theory. Then the Navier's solution technique is used to solve the governing equations of the motion to achieve the nonlocal free vibration behaviors of the nanobeams. A deep parametric study is also provided to demonstrate the effects of some parameters, such as length-to-height ratio, power-law index, nonlocal parameter, and two parameters of the elastic foundation, on the free vibration behaviors of the functionally graded sandwich nanobeams.

키워드

과제정보

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number ISP23-69.

참고문헌

  1. Aghababaei, R. and Reddy, J.N. (2009), "Nonlocal Third-Order Shear Deformation Plate Theory with Application to Bending and Vibration of Plates", J. Sound Vib., 326(1-2), 277-289. https://doi.org/10.1016/j.jsv.2009.04.044 
  2. Aksencer, T. and Aydogdu, M. (2011), "Levy type solution method for vibration and buckling of nanoplates using nonlocal elasticity theory", Physica E, 43(4), 954-959. https://doi.org/10.1016/j.physe.2010.11.024 
  3. Arefi, M., Kiani, M. and Zamani, M.H. (2020), "Nonlocal strain gradient theory for the magneto-electro-elastic vibration response of a porous FG-core sandwich nanoplate with piezomagnetic face sheets resting on an elastic foundation", J. Sandw. Struct. Mater., 22(7), 2157-2185. https://doi.org/10.1177/1099636218795378 
  4. Arefi, M. and Zenkour, A.M. (2017), "Size-dependent free vibration and dynamic analyses of piezo-electro-magnetic sandwich nanoplates resting on viscoelastic foundation", Physica B, 521, 188-197. https://doi.org/10.1016/j.physb.2017.06.066 
  5. Arefi, M. and Zenkour, A.M. (2016), "A simplified shear and normal deformations nonlocal theory for bending of functionally graded piezomagnetic sandwich nanobeams in magneto-thermo-electric environment", J. Sandw. Struct. Mater., 18(5), 624-651. https://doi.org/10.1177/1099636216652581 
  6. Aria, A.I. and Friswell, M.I. (2019), "A nonlocal finite element model for buckling and vibration of functionally graded nanobeams", Compos. Part B Eng., 166, 233-246. https://doi.org/10.1016/j.compositesb.2018.11.071 
  7. Aria, A.I., Rabczuk, T. and Friswell, M.I. (2019), "A finite element model for the thermo-elastic analysis of functionally graded porous nanobeams", Eur. J. Mech. A Solids, 77, 103767. https://doi.org/10.1016/j.euromechsol.2019.04.002 
  8. Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., 62(6), 695-702. https://doi.org/10.12989/sem.2017.62.6.695 
  9. Bensaid, I., Bekhadda, A. and Kerboua, B. (2018), "Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory", Adv. Nano Res., 6(3), 279-298. https://doi.org/10.12989/anr.2018.6.3.279 
  10. Chandel, V.S. and Talha., M. (2022a), "On uncertainty modeling of thermoelastic vibration for porous nanosandwich beams with gradient core based on nonlocal higher order beam model", Waves Random Complex Med., 0(0), 1-36. https://doi.org/10.1080/17455030.2022.2133192 
  11. Chandel, V.S. and Talha, M. (2022b), "Stochastic thermo-elastic vibration characteristics of functionally graded porous nanobeams using first-order perturbation-based nonlocal finite element model", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236(15), 8563-8581. https://doi.org/10.1177/095440622210862 
  12. Chandel, V.S. and Talha, M. (2023), "Vibration analysis of functionally graded porous nano-beams: A comparison study", Mater. Today Proc., In Press. https://doi.org/10.1016/j.matpr.2023.03.703 
  13. Chandel, V.S., Wang, G. and Talha, M. (2020), "Advances in modelling and analysis of nano structures: A review", Nanotech. Rev., 9(1), 230-258. https://doi.org/10.1515/ntrev-2020-0020 
  14. Cho, J. R. (2022), "Thermal buckling analysis of metal-ceramic functionally graded plates by natural element method", Struct. Eng. Mech., 84(6), 723-731. https://doi.org/10.12989/sem.2022.84.6.723 
  15. Ebrahimi, F. and Barati, M.R. (2017), "A third-order parabolic shear deformation beam theory for nonlocal vibration analysis of magneto-electro-elastic nanobeams embedded in twoparameter elastic foundation", Adv. Nano Res., 5(4), 313-336. https://doi.org/10.12989/anr.2017.5.4.313 
  16. Ebrahimi, F., Barati, M.R. and Zenkour, A.M. (2017), "Vibration analysis of smart embedded shear deformable nonhomogeneous piezoelectric nanoscale beams based on nonlocal elasticity theory", Int. J. Aeronaut. Space Sci., 18(2), 255-269. https://doi.org/10.5139/IJASS.2017.18.2.255 
  17. Ebrahimi, F. and Fardshad, R.E. (2018), "Modeling the size effect on vibration characteristics of functionally graded piezoelectric nanobeams based on reddy's shear deformation beam theory", Adv. Nano Res., 6(2), 113-133. https://doi.org/10.12989/anr.2018.6.2.113 
  18. Ebrahimi, F., Fardshad, R.E. and Mahesh, V. (2019), "Frequency response analysis of curved embedded magneto-electroviscoelastic functionally graded nanobeams", Adv. Nano Res., 7(6), 391-403. https://doi.org/10.12989/anr.2019.7.6.391 
  19. Ebrahimi, F., Karimiasl, M., Civalek, O . and Vinyas, M. (2019), "Surface effects on scale-dependent vibration behavior of flexoelectric sandwich nanobeams", Adv. Nano Res., 7(2), 77-88. https://doi.org/10.12989/anr.2019.7.2.077 
  20. Ebrahimi, F., Karimiasl, M. and Mahesh, V. (2019), "Vibration analysis of magneto-flexo-electrically actuated porous rotary nanobeams considering thermal effects via nonlocal strain gradient elasticity theory", Adv. Nano Res., 7(4), 221-229. https://doi.org/10.12989/anr.2019.7.4.221 
  21. Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Math. Comput., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090 
  22. Eringen, A.C. (1967), "Theory of micropolar plates", Zeitschrift Fur Angewandte Mathematik Und Physik ZAMP, 18(1), 12-30. https://doi.org/10.1007/BF01593891 
  23. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5 
  24. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803 
  25. Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0 
  26. Faraji Oskouie, M., Zargar, M. and Ansari, R. (2023), "Dynamic snap-through instability of hygro-thermally excited functionally graded porous arches", Int. J. Struct. Stabil. Dyn., 23(3), 2350030. https://doi.org/10.1142/S021945542350030X 
  27. Foroutan, K. and Ahmadi, H. (2022), "Nonlinear vibration of SSMFG cylindrical shells with internal resonances resting on the nonlinear viscoelastic foundation", Struct. Eng. Mech., 84(6), 767-782. https://doi.org/10.12989/sem.2022.84.6.767 
  28. Ghannadpour, S.A.M. and Khajeh, S. (2022), "Nonlinear bending and post-buckling behaviors of FG small-scaled plates based on modified strain gradient theory using ritz technique", Adv. Nano Res., 13(4), 393-406. https://doi.org/10.12989/anr.2022.13.4.393 
  29. Hadji, L. and Avcar, M. (2021), "Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory", Adv. Nano Res., 10(3), 281-293. https://doi.org/10.12989/anr.2021.10.3.281 
  30. Hana, B., Adda B. E.A., Amina, B. and Tounsi A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/ANR.2019.7.5.351 
  31. Hosseini-Hashemi, S., Bedroud, M. and Nazemnezhad, R. (2013), "An exact analytical solution for free vibration of functionally graded circular/annular mindlin nanoplates via nonlocal elasticity", Compos. Struct., 103, 108-118. https://doi.org/10.1016/j.compstruct.2013.02.022 
  32. Hosseini, S.A.H., Rahmani, O. and Bayat, S. (2022), "A new solution for dynamic response of FG nonlocal beam under moving harmonic load", Steel Compos. Struct., 43(2), 185-200. https://doi.org/10.12989/scs.2022.43.2.185 
  33. Ipek, S., Erdogan, A. and Guneyisi, E.M. (2022), "An artificial intelligence-based design model for circular CFST stub columns under axial load", Steel Compos. Struct., 44(1), 119-139. https://doi.org/10.12989/scs.2022.44.1.119 
  34. Kumar, H.S.N. and Kattimani, S. (2022), "Nonlinear analysis of two-directional functionally graded doubly curved panels with porosities", Struct. Eng. Mech., 82(4), 477-490. https://doi.org/10.12989/sem.2022.82.4.477 
  35. Larbi, C.F., Kaci A., Houari M.S.A., Tounsi A., Anwar, B.O. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/SCS.2015.18.2.425 
  36. Luat, D.T., Do V.T., Tran T.T., Phung V.M., Tran V.K. and Pham V.V. (2021), "Mechanical analysis of bi-functionally graded sandwich nanobeams", Adv. Nano Res., 11(1), 55-71. https://doi.org/10.12989/anr.2021.11.1.055 
  37. Mama, A., Houari M.S.A., Adda, B.E.A. and Tounsi A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5), 963-981. https://doi.org/10.12989/SCS.2016.20.5.963 
  38. Natarajan, S., Chakraborty, S., Thangavel, M., Bordas, S. and Rabczuk, T. (2012), "Size-dependent free flexural vibration behavior of functionally graded nanoplates", Comput. Mater. Sci., 65, 74-80. https://doi.org/10.1016/j.commatsci.2012.06.031 
  39. Nazemnezhad, R. and Hosseini-Hashemi, S. (2014), "Nonlocal nonlinear free vibration of functionally graded nanobeams", Compos. Struct., 110(1), 192-199. https://doi.org/10.1016/j.compstruct.2013.12.006 
  40. Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004 
  41. Reddy, J.N. and Pang, S.D. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103(2), 23511. https://doi.org/10.1063/1.2833431 
  42. Salehipour, H., Shahidi, A.R. and Nahvi, H. (2015), "Modified nonlocal elasticity theory for functionally graded materials", Int. J. Eng. Sci., 90, 44-57. https://doi.org/10.1016/j.ijengsci.2015.01.005 
  43. Sobhy, M. (2014), "Natural frequency and buckling of orthotropic nanoplates resting on two-parameter elastic foundations with various boundary conditions", J. Mech., 30(5), 443-453. https://doi.org/10.1017/jmech.2014.46 
  44. Sobhy, M. (2015), "A comprehensive study on FGM nanoplates embedded in an elastic medium", Compos. Struct., 134, 966-980. https://doi.org/10.1016/j.compstruct.2015.08.102 
  45. Thai, H.T. and Thuc P.V. (2012), "A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 54, 58-66. https://doi.org/10.1016/j.ijengsci.2012.01.009 
  46. Tlidji, Y., Benferhat, R., Daouadji, T.H., Tounsi, A. and Trinh, L.C. (2022), "Free vibration analysis of FGP nanobeams with classical and non-classical boundary conditions using statespace approach", Adv. Nano Res., 13(5), 453-463. https://doi.org/10.12989/anr.2022.13.5.453 
  47. Tossapanon, P. and Wattanasakulpong, N. (2016), "Stability and free vibration of functionally graded sandwich beams resting on two-parameter elastic foundation", Compos. Struct., 142, 215-225. https://doi.org/10.1016/j.compstruct.2016.01.085 
  48. Wattanasakulpong, N. and Eiadtrong, S. (2023), "Transient responses of sandwich plates with a functionally graded porous core: jacobi-ritz method", Int. J. Struct. Stabil. Dyn., 23(4), 2350039. https://doi.org/10.1142/S0219455423500396 
  49. Yang, T., Tang, Y., Qian, L. and Yang, X.D. (2018), "Nonlinear bending, buckling and vibration of bi-directional functionally graded nanobeams", Compos. Struct., 204, 313-319. https://doi.org/10.1016/j.compstruct.2018.07.045 
  50. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: An assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/SEM.2015.54.4.693 
  51. Zeng, S., Wang, B.L. and Wang, K.F. (2019), "Nonlinear vibration of piezoelectric sandwich nanoplates with functionally graded porous core with consideration of flexoelectric effect", Compos. Struct., 207, 340-351. https://doi.org/10.1016/j.compstruct.2018.09.040