과제정보
The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number ISP23-69.
참고문헌
- Aghababaei, R. and Reddy, J.N. (2009), "Nonlocal Third-Order Shear Deformation Plate Theory with Application to Bending and Vibration of Plates", J. Sound Vib., 326(1-2), 277-289. https://doi.org/10.1016/j.jsv.2009.04.044
- Aksencer, T. and Aydogdu, M. (2011), "Levy type solution method for vibration and buckling of nanoplates using nonlocal elasticity theory", Physica E, 43(4), 954-959. https://doi.org/10.1016/j.physe.2010.11.024
- Arefi, M., Kiani, M. and Zamani, M.H. (2020), "Nonlocal strain gradient theory for the magneto-electro-elastic vibration response of a porous FG-core sandwich nanoplate with piezomagnetic face sheets resting on an elastic foundation", J. Sandw. Struct. Mater., 22(7), 2157-2185. https://doi.org/10.1177/1099636218795378
- Arefi, M. and Zenkour, A.M. (2017), "Size-dependent free vibration and dynamic analyses of piezo-electro-magnetic sandwich nanoplates resting on viscoelastic foundation", Physica B, 521, 188-197. https://doi.org/10.1016/j.physb.2017.06.066
- Arefi, M. and Zenkour, A.M. (2016), "A simplified shear and normal deformations nonlocal theory for bending of functionally graded piezomagnetic sandwich nanobeams in magneto-thermo-electric environment", J. Sandw. Struct. Mater., 18(5), 624-651. https://doi.org/10.1177/1099636216652581
- Aria, A.I. and Friswell, M.I. (2019), "A nonlocal finite element model for buckling and vibration of functionally graded nanobeams", Compos. Part B Eng., 166, 233-246. https://doi.org/10.1016/j.compositesb.2018.11.071
- Aria, A.I., Rabczuk, T. and Friswell, M.I. (2019), "A finite element model for the thermo-elastic analysis of functionally graded porous nanobeams", Eur. J. Mech. A Solids, 77, 103767. https://doi.org/10.1016/j.euromechsol.2019.04.002
- Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., 62(6), 695-702. https://doi.org/10.12989/sem.2017.62.6.695
- Bensaid, I., Bekhadda, A. and Kerboua, B. (2018), "Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory", Adv. Nano Res., 6(3), 279-298. https://doi.org/10.12989/anr.2018.6.3.279
- Chandel, V.S. and Talha., M. (2022a), "On uncertainty modeling of thermoelastic vibration for porous nanosandwich beams with gradient core based on nonlocal higher order beam model", Waves Random Complex Med., 0(0), 1-36. https://doi.org/10.1080/17455030.2022.2133192
- Chandel, V.S. and Talha, M. (2022b), "Stochastic thermo-elastic vibration characteristics of functionally graded porous nanobeams using first-order perturbation-based nonlocal finite element model", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236(15), 8563-8581. https://doi.org/10.1177/095440622210862
- Chandel, V.S. and Talha, M. (2023), "Vibration analysis of functionally graded porous nano-beams: A comparison study", Mater. Today Proc., In Press. https://doi.org/10.1016/j.matpr.2023.03.703
- Chandel, V.S., Wang, G. and Talha, M. (2020), "Advances in modelling and analysis of nano structures: A review", Nanotech. Rev., 9(1), 230-258. https://doi.org/10.1515/ntrev-2020-0020
- Cho, J. R. (2022), "Thermal buckling analysis of metal-ceramic functionally graded plates by natural element method", Struct. Eng. Mech., 84(6), 723-731. https://doi.org/10.12989/sem.2022.84.6.723
- Ebrahimi, F. and Barati, M.R. (2017), "A third-order parabolic shear deformation beam theory for nonlocal vibration analysis of magneto-electro-elastic nanobeams embedded in twoparameter elastic foundation", Adv. Nano Res., 5(4), 313-336. https://doi.org/10.12989/anr.2017.5.4.313
- Ebrahimi, F., Barati, M.R. and Zenkour, A.M. (2017), "Vibration analysis of smart embedded shear deformable nonhomogeneous piezoelectric nanoscale beams based on nonlocal elasticity theory", Int. J. Aeronaut. Space Sci., 18(2), 255-269. https://doi.org/10.5139/IJASS.2017.18.2.255
- Ebrahimi, F. and Fardshad, R.E. (2018), "Modeling the size effect on vibration characteristics of functionally graded piezoelectric nanobeams based on reddy's shear deformation beam theory", Adv. Nano Res., 6(2), 113-133. https://doi.org/10.12989/anr.2018.6.2.113
- Ebrahimi, F., Fardshad, R.E. and Mahesh, V. (2019), "Frequency response analysis of curved embedded magneto-electroviscoelastic functionally graded nanobeams", Adv. Nano Res., 7(6), 391-403. https://doi.org/10.12989/anr.2019.7.6.391
- Ebrahimi, F., Karimiasl, M., Civalek, O . and Vinyas, M. (2019), "Surface effects on scale-dependent vibration behavior of flexoelectric sandwich nanobeams", Adv. Nano Res., 7(2), 77-88. https://doi.org/10.12989/anr.2019.7.2.077
- Ebrahimi, F., Karimiasl, M. and Mahesh, V. (2019), "Vibration analysis of magneto-flexo-electrically actuated porous rotary nanobeams considering thermal effects via nonlocal strain gradient elasticity theory", Adv. Nano Res., 7(4), 221-229. https://doi.org/10.12989/anr.2019.7.4.221
- Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Math. Comput., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090
- Eringen, A.C. (1967), "Theory of micropolar plates", Zeitschrift Fur Angewandte Mathematik Und Physik ZAMP, 18(1), 12-30. https://doi.org/10.1007/BF01593891
- Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
- Faraji Oskouie, M., Zargar, M. and Ansari, R. (2023), "Dynamic snap-through instability of hygro-thermally excited functionally graded porous arches", Int. J. Struct. Stabil. Dyn., 23(3), 2350030. https://doi.org/10.1142/S021945542350030X
- Foroutan, K. and Ahmadi, H. (2022), "Nonlinear vibration of SSMFG cylindrical shells with internal resonances resting on the nonlinear viscoelastic foundation", Struct. Eng. Mech., 84(6), 767-782. https://doi.org/10.12989/sem.2022.84.6.767
- Ghannadpour, S.A.M. and Khajeh, S. (2022), "Nonlinear bending and post-buckling behaviors of FG small-scaled plates based on modified strain gradient theory using ritz technique", Adv. Nano Res., 13(4), 393-406. https://doi.org/10.12989/anr.2022.13.4.393
- Hadji, L. and Avcar, M. (2021), "Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory", Adv. Nano Res., 10(3), 281-293. https://doi.org/10.12989/anr.2021.10.3.281
- Hana, B., Adda B. E.A., Amina, B. and Tounsi A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/ANR.2019.7.5.351
- Hosseini-Hashemi, S., Bedroud, M. and Nazemnezhad, R. (2013), "An exact analytical solution for free vibration of functionally graded circular/annular mindlin nanoplates via nonlocal elasticity", Compos. Struct., 103, 108-118. https://doi.org/10.1016/j.compstruct.2013.02.022
- Hosseini, S.A.H., Rahmani, O. and Bayat, S. (2022), "A new solution for dynamic response of FG nonlocal beam under moving harmonic load", Steel Compos. Struct., 43(2), 185-200. https://doi.org/10.12989/scs.2022.43.2.185
- Ipek, S., Erdogan, A. and Guneyisi, E.M. (2022), "An artificial intelligence-based design model for circular CFST stub columns under axial load", Steel Compos. Struct., 44(1), 119-139. https://doi.org/10.12989/scs.2022.44.1.119
- Kumar, H.S.N. and Kattimani, S. (2022), "Nonlinear analysis of two-directional functionally graded doubly curved panels with porosities", Struct. Eng. Mech., 82(4), 477-490. https://doi.org/10.12989/sem.2022.82.4.477
- Larbi, C.F., Kaci A., Houari M.S.A., Tounsi A., Anwar, B.O. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/SCS.2015.18.2.425
- Luat, D.T., Do V.T., Tran T.T., Phung V.M., Tran V.K. and Pham V.V. (2021), "Mechanical analysis of bi-functionally graded sandwich nanobeams", Adv. Nano Res., 11(1), 55-71. https://doi.org/10.12989/anr.2021.11.1.055
- Mama, A., Houari M.S.A., Adda, B.E.A. and Tounsi A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5), 963-981. https://doi.org/10.12989/SCS.2016.20.5.963
- Natarajan, S., Chakraborty, S., Thangavel, M., Bordas, S. and Rabczuk, T. (2012), "Size-dependent free flexural vibration behavior of functionally graded nanoplates", Comput. Mater. Sci., 65, 74-80. https://doi.org/10.1016/j.commatsci.2012.06.031
- Nazemnezhad, R. and Hosseini-Hashemi, S. (2014), "Nonlocal nonlinear free vibration of functionally graded nanobeams", Compos. Struct., 110(1), 192-199. https://doi.org/10.1016/j.compstruct.2013.12.006
- Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
- Reddy, J.N. and Pang, S.D. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103(2), 23511. https://doi.org/10.1063/1.2833431
- Salehipour, H., Shahidi, A.R. and Nahvi, H. (2015), "Modified nonlocal elasticity theory for functionally graded materials", Int. J. Eng. Sci., 90, 44-57. https://doi.org/10.1016/j.ijengsci.2015.01.005
- Sobhy, M. (2014), "Natural frequency and buckling of orthotropic nanoplates resting on two-parameter elastic foundations with various boundary conditions", J. Mech., 30(5), 443-453. https://doi.org/10.1017/jmech.2014.46
- Sobhy, M. (2015), "A comprehensive study on FGM nanoplates embedded in an elastic medium", Compos. Struct., 134, 966-980. https://doi.org/10.1016/j.compstruct.2015.08.102
- Thai, H.T. and Thuc P.V. (2012), "A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 54, 58-66. https://doi.org/10.1016/j.ijengsci.2012.01.009
- Tlidji, Y., Benferhat, R., Daouadji, T.H., Tounsi, A. and Trinh, L.C. (2022), "Free vibration analysis of FGP nanobeams with classical and non-classical boundary conditions using statespace approach", Adv. Nano Res., 13(5), 453-463. https://doi.org/10.12989/anr.2022.13.5.453
- Tossapanon, P. and Wattanasakulpong, N. (2016), "Stability and free vibration of functionally graded sandwich beams resting on two-parameter elastic foundation", Compos. Struct., 142, 215-225. https://doi.org/10.1016/j.compstruct.2016.01.085
- Wattanasakulpong, N. and Eiadtrong, S. (2023), "Transient responses of sandwich plates with a functionally graded porous core: jacobi-ritz method", Int. J. Struct. Stabil. Dyn., 23(4), 2350039. https://doi.org/10.1142/S0219455423500396
- Yang, T., Tang, Y., Qian, L. and Yang, X.D. (2018), "Nonlinear bending, buckling and vibration of bi-directional functionally graded nanobeams", Compos. Struct., 204, 313-319. https://doi.org/10.1016/j.compstruct.2018.07.045
- Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: An assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/SEM.2015.54.4.693
- Zeng, S., Wang, B.L. and Wang, K.F. (2019), "Nonlinear vibration of piezoelectric sandwich nanoplates with functionally graded porous core with consideration of flexoelectric effect", Compos. Struct., 207, 340-351. https://doi.org/10.1016/j.compstruct.2018.09.040