DOI QR코드

DOI QR Code

Application of numerical methods for dynamic response induced by moving load on concrete shells containing nanoparticles with economic study

  • Taoqian Xie (School of Public Administration, Central China Normal University) ;
  • Wei Han (Wanpu (Wuhan) Institute of Education) ;
  • Haoqi Chang (College of Cities and environmental sciences, Central China Normal University) ;
  • M.R. Motaghedfer (College of Engineering, Azad University)
  • 투고 : 2021.01.06
  • 심사 : 2024.02.19
  • 발행 : 2024.03.25

초록

This paper conducts a thorough economic evaluation of integrating nanoparticles into concrete structures within the construction industry, aiming to elevate the material properties of concrete. Employing the Halpin-Tsai micromechanics theory for deriving the effective material properties of the nanocomposite concrete structure, the research investigates the nuanced impact of nanoparticles on various mechanical properties, including the modulus of elasticity, compressive strength, and their indirect effects on the percentage of reinforcement. Implementing the Euler theory to formulate the governing equation based on Hamilton's principle, the study delves into the pricing dynamics of nanoparticles and their influence on the overall cost structure of concrete structures. Notably, the findings reveal that a measured increase in the volume percentage of nanoparticles, up to 1%, results in a remarkable 78% improvement in elastic modulus and a substantial 142% reduction in armature percentage. Remarkably, from an economic perspective, the incremental cost associated with the integration of nanoparticles is relatively modest (around $1 per ton of concrete), considering the substantial enhancements in mechanical properties achieved.

키워드

참고문헌

  1. Arbabi, A., Kolahchi, R. and Rabani Bidgoli, M. (2017), "Concrete columns reinforced with Zinc Oxide nanoparticles subjected to electric field: buckling analysis", Wind Struct., 24(5), 431-446. https://doi.org/10.12989/was.2017.24.5.431
  2. Amoli, A., Kolahchi, R. and Rabani Bidgoli, M. (2018), "Seismic analysis of AL2O3 nanoparticles-reinforced concrete plates based on sinusoidal shear deformation theory", Earthq. Struct., 15(3), 285-294. https://doi.org/10.12989/eas.2018.15.3.285.
  3. Azmi, M., Kolahchi, R. and Rabani Bidgoli, M. (2019), "Dynamic analysis of concrete column reinforced with Sio2 nanoparticles subjected to blast load", Adv. Concr. Constr., 7(1), 51-63. https://doi.org/10.12989/acc.2019.7.1.051.
  4. Bakhshandeh Amnieh, H. and Zamzam, M.S. (2017), "Theoretical and experimental analysis of wave propagation in concrete blocks subjected to impact load considering the effect of nanoparticles", Comput. Concr., 20(6), 711-718. https://doi.org/10.12989/cac.2017.20.6.711
  5. Babazadeh, A., Burgueno, R. and Silva, P.F. (2016), "Evaluation of the critical plastic region length in slender reinforced concrete bridge columns", Eng. Struct., 125, 280-293. https://doi.org/10.1016/j.engstruct.2016.07.021
  6. Fakhar, A. and Kolahchi, R. (2018), "Dynamic buckling of magnetorheological fluid integrated by visco-piezo-GPL reinforced plates", Int. J. Mech. Sci., 144, 788-799. https://doi.org/10.1016/j.ijmecsci.2018.06.036.
  7. Farokhian, A. and Kolahchi, R. (2020), "Frequency and instability responses in nanocomposite plate assuming different distribution of CNTs", Struct. Eng. Mech., 73(5), 555-563. https://doi.org/10.12989/sem.2020.73.5.555.
  8. Flores, I., Sobolev, K., Torres, L.M., Valdez, P.L., Zarazua, E. and Cuellar, E.L. (2010), "Performance of cement systems with nano- sio2 particles produced using sol-gel method", TRB First International Conference in North America on Nanotechnology in Cement and Concrete, Irvine, California, USA, May 5-7.
  9. Faramoushjan, S.G., Jalalifar, H. and Kolahchi, R. (2021), "Mathematical modelling and numerical study for buckling study in concrete beams containing carbon nanotubes", Adv. Concr. Constr., 11(6), 521-529. https://doi.org/10.12989/acc.2021.11.6.521.
  10. Golabchi, H., Kolahchi, R. and Rabani Bidgoli, M. (2018), "Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects", Comput. Concrete, 21, 431-440. https://doi.org/10.12989/cac.2018.21.4.431
  11. Hajmohammad, M.H., Azizkhani, M.B. and Kolahchi, R. (2018a), "Multiphase nanocomposite viscoelastic laminated conical shells subjected to magneto-hygrothermal loads: Dynamic buckling analysis", Int. J. Mech. Sci., 137, 205-213. https://doi.org/10.1016/j.ijmecsci.2018.01.026 .
  12. Hajmohammad, M.H., Sharif Zarei, M., Nouri, A. and Kolahchi, R. (2017), "Dynamic buckling of sensor/functionally gradedcarbon nanotube-reinforced laminated plates/actuator based on sinusoidal-visco-piezoelasticity theories", J. Sandw. Struct. Mater., 1099636217720373. https://doi.org/10.1177/1099636217720373.
  13. Hajmohammad, M.H., Zarei, M.S., Farrokhian, A. and Kolahchi, R. (2018b), "A layerwise theory for buckling analysis of truncated conical shells reinforced by CNTs and carbon fibers integrated with piezoelectric layers in hygrothermal environment", Adv. Nano Res., 6(4), 299-321. https://doi.org/10.12989/anr.2018.6.4.299.
  14. Hajmohammad, M.H., Nouri, A.H., Zarei, M.S. and Kolahchi, R. (2019a), "A new numerical approach and visco-refined zigzag theory for blast analysis of auxetic honeycomb plates integrated by multiphase nanocomposite facesheets in hygrothermal", Eng. Comput., 35(4), 1141-1157. https://doi.org/10.1007/s00366-018-0655-x.
  15. Hajmohammad, M.H., Maleki, M. and Kolahchi, R. (2018c), "Seismic response of underwater concrete pipes conveying fluid covered with nano-fiber reinforced polymer layer", Soil Dyn. Earthq. Eng., 110, 18-27. https://doi.org/10.1016/j.soildyn.2018.04.002
  16. Hajmohammad, M.H., Zarei, M.S., Kolahchi, R. and Karami, H. (2019b), "Visco-piezoelasticity-zigzag theories for blast response of porous beams covered by graphene platelet-reinforced piezoelectric layers", J. Sandw. Struct. Mater., 1099636219839175. https://doi.org/10.1177/1099636219839175.
  17. Hajmohammad, M.H., Farrokhian, A. and Kolahchi, R. (2021), "Dynamic analysis in beam element of wave-piercing Catamarans undergoing slamming load based on mathematical modelling", Ocean Eng., 234, 109269. https://doi.org/10.1016/j.oceaneng.2021.109269.
  18. Jafarian Arani, A. and Kolahchi, R. (2016), "Buckling analysis of embedded laminated porous concrete beams armed with carbon nanotubes", Comput. Concr., 17(5), 567-578. https://doi.org/10.12989/cac.2016.17.5.567
  19. Jo, B.W., Kim, C.H. and Lim, J.H. (2007), "Investigations on the development of powder concrete with nano-SiO2 particles", KSCE J. Civil Eng., 11, 37-42. https://doi.org/10.1007/BF02823370
  20. Jamali, M., Shojaee, T., Kolahchi, R. and Mohammadi, B. (2016), "Buckling analysis of nanocomposite cut out plate using domain decomposition method and orthogonal polynomials", Steel Compos. Struct., 22(3), 691-712. https://doi.org/10.12989/scs.2016.22.3.691.
  21. Jassas, M.R., Rabani Bidgoli, M. and Kolahchi, R. (2019), "Forced vibration analysis of concrete plates reinforced by agglomerated SiO2 nanoparticles based on numerical methods", Constr. Build. Mater., 211, 796-806. https://doi.org/10.1016/j.conbuildmat.2019.03.263.
  22. Javani, R., Rabani Bidgoli, M. and Kolahchi, R. (2019), "Buckling analysis of plates reinforced by Graphene platelet based on Halpin-Tsai and Reddy theories", Steel Compos. Struct., 31(4), 419-426. https://doi.org/10.12989/scs.2019.31.4.419.
  23. Jafari Natanzi, A., Soleimani Jafari, G. and Kolahchi, R. (2018), "Vibration and instability of nanocomposite pipes conveying fluid mixed by nanoparticles resting on viscoelastic foundation", Comput. Concr., 21(5), 569-582. https://doi.org/10.12989/cac.2018.21.5.569.
  24. Jamali, M., Shojaee, T., Mohammadi, B. and Kolahchi, R. (2019), "Cut out effect on nonlinear post-buckling behavior of FGCNTRC micro plate subjected to magnetic field via FSDT", Adv. Nano Res., 7(6), 405-417. https://doi.org/10.12989/anr.2019.7.6.405.
  25. Keshtegar, B., Motezaker, M., Kolahchi,R. and Trung, N.T. (2020a), "Wave propagation and vibration responses in porous smart nanocomposite sandwich beam resting on Kerr foundation considering structural damping", Thin Wall Struct., 154, 106820. https://doi.org/10.1016/j.tws.2020.106820
  26. Keshtegar, B. and Kolahchi, R. (2018), "Reliability analysis-based conjugate map of beams reinforced by ZnO nanoparticles using sinusoidal shear deformation theory", Steel Compos. Struct., 28(2), 195-207. https://doi.org/10.12989/scs.2018.28.2.195.
  27. Keshtegar, B., Tabatabaei, J., Kolahchi, R. and Trung, N.T. (2020c), "Dynamic stress response in the nanocomposite concrete pipes with internal fluid under the ground motion load", Adv. Concr. Constr., 9(3), 327-335. https://doi.org/10.12989/acc.2020.9.3.327.
  28. Keshtegar, B., Farrokhian, A., Kolahchi, R. and Trung, N.T. (2020b), "Dynamic stability response of truncated nanocomposite conical shell with magnetostrictive face sheets utilizing higher order theory of sandwich panels", Eur. J. Mech. A Solids, 82, 104010. https://doi.org/10.1016/j.euromechsol.2020.104010
  29. Kolahchi, R. (2017a), "A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Technol., 66, 235-248. https://doi.org/10.1016/j.ast.2017.03.016.
  30. Kolahdouzan, F., Mosayyebi, M., Ghasemi, F.A., Kolahchi, R. and Mousavi Panah, S.M. (2020), "Free vibration and buckling analysis of elastically restrained FG-CNTRC sandwich annular nanoplates", Adv. Nano Res., 9(4), 237-250. https://doi.org/10.12989/anr.2020.9.4.237.
  31. Liu, H., Ma, J., Huang, W. (2018), "Sensor-based complete coverage path planning in dynamic environment for cleaning robot", CAAI Trans. Intell. Technol., 3, 65-72. https://doi.org/10.1049/trit.2018.0009
  32. Motezaker, M. and Kolahchi, R. (2017a), "Seismic response of concrete columns with nanofiber reinforced polymer layer", Comput. Concr., 20(3), 361-368. https://doi.org/10.12989/cac.2017.20.3.361.
  33. Motezaker, M. and Kolahchi, R. (2017b), "Seismic response of SiO2 nanoparticles-reinforced concrete pipes based on DQ and newmark methods", Comput. Concr., 19(6), 745-753. https://doi.org/10.12989/cac.2017.19.6.745.
  34. Motezaker, M., Kolahchi, R., Kumar Rajak, D. and Mahmoud, S. R. (2021), "Influences of fiber reinforced polymer layer on the dynamic deflection of concrete pipes containing nanoparticle subjected to earthquake load", Polym. Compos., 42(8), 4073-4081. https://doi.org/10.1002/pc.26118.
  35. Naseri Taheri, M., Sabet, S.A. and Kolahchi, R. (2020), "Experimental investigation of self-healing concrete after crack using nano-capsules including polymeric shell and nanoparticles core", Smart Struct. Syst., 25(3), 337-343. https://doi.org/10.12989/sss.2020.25.3.337.
  36. Sanchez, F. and Sobolev, K. (2010), "Nanotechnology in concrete - A review". Constr. Build. Mater., 24, 2060-2071. https://doi.org/10.1016/j.conbuildmat.2010.03.014
  37. Taherifar, R., Zareei, S.A., Rabani Bidgoli, M. and Kolahchi, R. (2021), "Application of differential quadrature and Newmark methods for dynamic response in pad concrete foundation covered by piezoelectric layer", J. Computat. Appl. Math., 382, 113075. https://doi.org/10.1016/j.cam.2020.113075.
  38. Rishikeshan, C.A. and Ramesh, H. (2017), "A novel mathematical morphology based algorithm for shoreline extraction from satellite images", Geo-spatial Inform. Sci., 20, 345-352 . https://doi.org/10.1080/10095020.2017.1403089
  39. Padhy, S. and Panda, S. (2017), "A hybrid stochastic fractal search and pattern search technique based cascade PI-PD controller for automatic generation control of multi-source power systems in presence of plug in electric vehicles", CAAI Trans. Intell. Technol., 2, 12-25 . https://doi.org/10.1016/j.trit.2017.01.002
  40. Scrivener, K.L. (2009), "Nanotechnology and cementitious materials", Proceedings of the NICOM3 3rd Int Symp Nanotech Const, Prague, Czech Republic.
  41. Shokravi, M. (2017), "Vibration analysis of silica nanoparticlesreinforced concrete beams considering agglomeration effects", Comput. Concr., 19(3), 333-338. https://doi.org/10.12989/cac.2017.19.3.333
  42. Trtik, P. and Bartos, P.J.M. (2001), "Nanotechnology and concrete: What can we utilise from the upcoming technologies?", Proceedings pf the 2nd Annamaria Workshop: Cement Concrete: Trends & Challenges.
  43. Torres-Jimenez, J. and Rodriguez-Cristerna, A. (2017), "Metaheuristic post-optimization of the NIST repository of covering arrays", CAAI Trans. Intell. Technol., 2, 31-38 . https://doi.org/10.1016/j.trit.2016.12.006
  44. Yang, H. and Yu, L. (2017), "Feature extraction of wood-hole defects using wavelet-based ultrasonic testing", J. Forest. Res., 28, 395-402 . https://doi.org/10.1007/s11676-016-0297-z
  45. Wen, Q., He, J., Guan, Sh., Chen, T., Hu, Y., Wu, W., Liu, F., Qiao, Y. (2017), "The TripleSat constellation: A new geospatial data service model", Geo-spatial Inform. Sci., 20, 163-173 . https://doi.org/10.1080/10095020.2017.1329266
  46. Zamanian, M., Kolahchi, R. and Rabani Bidgoli, M. (2017), "Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with SiO2 nanoparticles", Wind. Struct., 24(1), 43-57. https://doi.org/10.12989/was.2017.24.1.043.
  47. Zarei, M.S., Azizkhani, M.B., Hajmohammad, M.H. and Kolahchi, R. (2017), "Dynamic buckling of polymer-carbon nanotube-fiber multiphase nanocomposite viscoelastic laminated conical shells in hygrothermal environments", J. Sandw. Struct. Mater., 1099636217743288. https://doi.org/10.1177/1099636217743288.
  48. Zamani, A., Kolahchi, R. and Rabani Bidgoli, M. (2017), "Seismic response of smart nanocomposite cylindrical shell conveying fluid flow using HDQ-Newmark methods", Comput. Concr., 20(6), 671-682. https://doi.org/10.12989/cac.2017.20.6.671.
  49. Zhou, X., Liu, J., Wang, X. and Frank Chen, Y. (2016), "Behavior and design of slender circular tubed-reinforced-concrete columns subjected to eccentric compression", Eng. Struct., 124, 17-28. https://doi.org/10.1016/j.engstruct.2016.05.036
  50. Zhao, B., Gao, L., Liao, W. and Zhang, B. (2017), "A new kernel method for hyperspectral image feature extraction", Geo-spatial Inform. Sci., 20, 309-318 . https://doi.org/10.1080/10095020.2017.1403088