DOI QR코드

DOI QR Code

Static bending response of axially randomly oriented functionally graded carbon nanotubes reinforced composite nanobeams

  • Ahmed Amine Daikh (Artificial Intelligence Laboratory for Mechanical and Civil Structures, and Soil, University Centre of Naama) ;
  • Ahmed Drai (Department of Mechanical Engineering, Mustapha STAMBOULI University of Mascara) ;
  • Mohamed Ouejdi Belarbi (Laboratoire de Genie Energetique et Materiaux, LGEM, Universite de Biskra) ;
  • Mohammed Sid Ahmed Houari (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli ) ;
  • Benoumer Aour (LABAB Laboratory of ENPO) ;
  • Mohamed A. Eltaher (Faculty of Engineering, Mechanical Engineering Department, King Abdulaziz University) ;
  • Norhan A. Mohamed (Engineering Mathematics Department, Faculty of Engineering, Zagazig University)
  • 투고 : 2021.05.22
  • 심사 : 2024.01.28
  • 발행 : 2024.03.25

초록

In this work, an analytical model employing a new higher-order shear deformation beam theory is utilized to investigate the bending behavior of axially randomly oriented functionally graded carbon nanotubes reinforced composite nanobeams. A modified continuum nonlocal strain gradient theory is employed to incorporate both microstructural effects and geometric nano-scale length scales. The extended rule of mixture, along with molecular dynamics simulations, is used to assess the equivalent mechanical properties of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) beams. Carbon nanotube reinforcements are randomly distributed axially along the length of the beam. The equilibrium equations, accompanied by nonclassical boundary conditions, are formulated, and Navier's procedure is used to solve the resulting differential equation, yielding the response of the nanobeam under various mechanical loadings, including uniform, linear, and sinusoidal loads. Numerical analysis is conducted to examine the influence of inhomogeneity parameters, geometric parameters, types of loading, as well as nonlocal and length scale parameters on the deflections and stresses of axially functionally graded carbon nanotubes reinforced composite (AFG CNTRC) nanobeams. The results indicate that, in contrast to the nonlocal parameter, the beam stiffness is increased by both the CNTs volume fraction and the length-scale parameter. The presented model is applicable for designing and analyzing microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS) constructed from carbon nanotubes reinforced composite nanobeams.

키워드

참고문헌

  1. Abdelhaffez, G.S., Daikh, A.A., Saleem, H.A. and Eltaher, M.A. (2023), "Buckling analysis of coated functionally graded spherical nanoshells resting on an orthotropic elastic medium", Mathematics, 11(2), 409. https://doi.org/10.3390/math11020409
  2. Abdelrahman, A.A. and Eltaher, M.A. (2020), "On bending and buckling responses of perforated nanobeams including surface energy for different beams theories", Eng. Comput., 1-27. https://doi.org/10.1007/s00366-020-01211-8
  3. Abo-bakr, H.M., Abo-bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2021), "Multi-objective shape optimization for axially functionally graded microbeams", Compos. Struct., 258, 113370. https://doi.org/10.1016/j.compstruct.2020.113370
  4. Abo-Bakr, R.M., Eltaher, M. A. and Attia, M.A. (2020), "Pull-in and freestanding instability of actuated functionally graded nanobeams including surface and stiffening effects", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-020-01146-0
  5. Akgoz, B., (2019), "Static stability analysis of axially functionally graded tapered micro columns with different boundary conditions", Steel Compos. Struct., 33(1), 133-142. http://doi.org/10.12989/scs.2019.33.1.133
  6. Askes, H. and Aifantis, E.C. (2009), "Gradient elasticity and flexural wave dispersion in carbon nanotubes", Phys. Rev. B, 80(19), 195412. https://doi.org/10.1103/PhysRevB.80.195412
  7. Bekhadda, A., Cheikh, A., Bensaid, I., Hadjoui, A. and and Daikh, A. (2019), "A novel first order refined shear-deformation beam theory for vibration and buckling analysis of continuously graded beams", Adv. Aircr. Spacecr. Sci., 6(3), 189-206. https://doi.org/10.12989/aas.2019.6.3.189
  8. Belarbi, M.O. and Tati, A. (2016), "Bending analysis of composite sandwich plates with laminated face sheets: New finite element formulation", J. Solid Mech., 8(2), 280-299.
  9. Belarbi, M.O., Houari, M.S.A. Daikh, A.A. Garg, A. Merzouki, T. Chalak, H.D. and Hirane, H. (2021), "Nonlocal finite element model for the bending and buckling analysis of functionally graded nanobeams using a novel shear deformation theory", Compos. Struct., 264, 113712. https://doi.org/10.1016/j.compstruct.2021.113712
  10. Bensaid, I., Daikh, A.A. and Drai, A. (2019), "Size-dependent free vibration and buckling analysis of sigmoid and power law functionally graded sandwich nanobeams with microstructural defects", Proc IMechE Part C J Mech. Eng. Sci., 234(18), 3667-3688. https://doi.org/10.1177/0954406220916481
  11. Cao, D., Gao, Y. Yao, M.and Zhang, W. (2018), "Free vibration of axially functionally graded beams using the asymptotic development method", Eng. Struct., 173, 442-448. https://doi.org/10.1016/j.engstruct.2018.06.111
  12. Civalek, O ., Dastjerdi, S., Akbas S. and Akgoz B. (2021), "Vibration analysis of carbon nanotube-reinforced composite microbeams", Math. Meth. Appl. Sci., Special Issue Paper. https://doi.org/10.1002/mma.7069
  13. Daikh, A.A., Bensaid, I., Bachiri, A., Houari, M.S.A. Tounsi, A. and Merzouki, T. (2020d), "On static bending of multilayered carbon nanotube-reinforced composite plates", Comput. Concr., 26(2). https://doi.org/10.12989/cac.2020.26.2.000
  14. Daikh, A.A. (2019), "Temperature dependent vibration analysis of functionally graded sandwich plates resting on Winkler/Pasternak/Kerr foundation", Mater. Res. Express, 6. 065702. https://doi.org/10.1088/2053-1591/ab097b
  15. Daikh, A.A. and A.M. Zenkour, (2020), "Bending of functionally graded sandwich nanoplates resting on pasternak foundation under different boundary conditions", J. Appl. Comput. Mech., 2020. https://doi.org/10.22055/JACM.2020.33136.2166
  16. Daikh, A.A. and Zenkour, A.M. (2019a), "Free vibration and buckling of porous power-law and sigmoid functionally graded sandwich plates using a simple higher-order shear deformation theory", Mater. Res. Express, 6115707. https://doi.org/10.1088/2053-1591/ab48a9
  17. Daikh, A.A. and Zenkour, A.M. (2019), "Effect of porosity on the bending analysis of various functionally graded sandwich plates", Mater Res Express, 6, 065703. https://doi.org/10.1088/2053-1591/ab0971
  18. Daikh, A.A. and Zenkour, A.M. (2020), "Bending of functionally graded sandwich nanoplates resting on Pasternak foundation under different boundary conditions", J. Appl. Comput. Mech., 6, 1245-1259. https://doi.org/10.22055/JACM.2020.33136.2166
  19. Daikh, A.A., Houari, M.S.A., Belarbi, M.O., Chakraverty, S. and Eltaher, M.A. (2021a), "Analysis of axially temperature dependent functionally graded carbon nanotube reinforced composite plates", Eng. Comput., 38(Suppl 3), 2533-2554. https://doi.org/10.1007/s00366-021-01413-8
  20. Daikh, A.A., A. Drai, M.S.A. Houari, and Eltaher, M.A. (2020f), "Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes", Steel Compos. Struct., 36(6), 643-656. http://dx.doi.org/10.12989/scs.2020.36.6.643
  21. Daikh, A.A., Bachiri, A., Houari, M.S.A. and Tounsi, A. (2020b), "Size dependent free vibration and buckling of multilayered carbon nanotubes reinforced composite nanoplates in thermal environment", Mech. Based Des. Struct., 1-29. https://doi.org/10.1080/15397734.2020.1752232
  22. Daikh, A.A., Bensaid, I and Zenkour, A.M. (2020d), "Temperature dependent thermomechanical bending response of functionally graded sandwich plates", Eng. Res. Express, 2, 015006. https://doi.org/10.1088/2631-8695/ab638c
  23. Daikh, A.A., Drai, A. Bensaid, I. Houari, M.S.A. and Tounsi, A. (2020a), "On vibration of functionally graded sandwich nanoplates in the thermal environment", J. Sandw. Struct. Mater., 23(6), 2217-2244. https://doi.org/10.1177/1099636220909790
  24. Daikh, A.A., Guerroudj, M., Elajrami, M., Megueni, A., (2019a), "Thermal buckling of functionally graded sandwich beams", Adv. Mater. Res., 1156, 43-59. https://doi.org/10.4028/www.scientific.net/AMR.1156.43
  25. Daikh, A.A., Houari, M.S.A. and Eltaher, M.A. (2020c), "A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates", Compos. Struct., 113347. https://doi.org/10.1016/j.compstruct.2020.113347
  26. Daikh, A.A., Houari, M.S.A., Karami, B., Eltaher, M.A., Dimitri, R. and Tornabene, F. (2021b), "Buckling analysis of CNTRC curved sandwich nanobeams in thermal Environment", Appl. Sci., 11, 3250. https://doi.org/10.3390/app11073250
  27. Daikh, A.A., Houari, M.S.A., Tounsi, A. (2019b), "Buckling analysis of porous FGM sandwich nanoplates due to heat conduction via nonlocal strain gradient theory", Eng. Res. Express, 1, 015022. https://doi.org/10.1088/2631-8695/ab38f9
  28. Ebrahimi, F. and Barati, M.R. (2018), "Buckling analysis of nonlocal strain gradient axially functionally graded nanobeams resting on variable elastic medium", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(11), 2067-2078. https://doi.org/10.1177/0954406217713518
  29. El-Ashmawy, A.M. and Xu, Y. (2021), "Combined effect of carbon nanotubes distribution and orientation on functionally graded nanocomposite beams using finite element analysis", Mater. Res. Express, 8(1), 015012. https://doi.org/10.1088/2053-1591/abc773
  30. Eltaher, M.A. and Mohamed, N. (2020a), "Nonlinear stability and vibration of imperfect CNTs by doublet mechanics", Appl. Math. Comput., 382, 125311. https://doi.org/10.1016/j.amc.2020.125311
  31. Eltaher, M.A., El-Borgi, S. and Reddy, J.N. (2016), "Nonlinear analysis of size-dependent and material-dependent nonlocal CNTs", Compos. Struct., 153, 902-913. https://doi.org/10.1016/j.compstruct.2016.07.013
  32. Eringen, A.C. (1972), "Nonlocal polar elastic continua", International Journal of Engineering Science, 10(1): 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
  33. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  34. Esen, I., O zarpa, C. and Eltaher, M.A. (2021), "Free vibration of a cracked FG microbeam embedded in an elastic matrix and exposed to magnetic field in a thermal environment", Compos. Struct., 261, 113552. https://doi.org/10.1016/j.compstruct.2021.113552
  35. Ferreira, A., Castro, L.M. and Bertoluzza, S. (2009), "A high order collocation method for the static and vibration analysis of composite plates using a first-order theory", Compos. Struct., 89(3), 424-432. https://doi.org/10.1016/j.compstruct.2008.09.006
  36. Ghannadpour, S., Mohammadi, B. and Fazilati, J. (2013), "Bending, buckling and vibration problems of nonlocal Euler beams using Ritz method" Compos. Struct., 96, 584-589. https://doi.org/10.1016/j.compstruct.2012.08.024
  37. Hamed, M.A., Abo-bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core", Eng. Comput., 36(4), 1929-1946. https://doi.org/10.1007/s00366-020-01023-w
  38. Houari, M.S.A., Bessaim, A. Bernard, F. Tounsi, A. and Mahmoud, S.R. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., 28(1),13-24. http://dx.doi.org/10.12989/scs.2018.28.1.013
  39. Karamanli, A. and Vo, T.P. (2021), "Finite element model for carbon nanotube-reinforced and graphene nanoplatelet-reinforced composite beams", Compos. Struct., 264, 113739. https://doi.org/10.1016/j.compstruct.2021.113739
  40. Karamanli, A., Eltaher, M.A., Thai, S. and Vo, T.P. (2023). "Transient dynamics of 2D-FG porous microplates under moving loads using a higher-order finite element model", Eng. Struct., 278, 115566. https://doi.org/10.1016/j.engstruct.2022.115566
  41. Khaniki, H.B. and Ghayesh, M.H. (2020), "On the dynamics of axially functionally graded CNT strengthened deformable beams", Eur. Phys. J. Plus, 135(5), 415. https://doi.org/10.1140/epjp/s13360-020-00433-5
  42. Li, X., Li, L. Hu, Y. Ding, Z. and Deng, W. (2017), "Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory", Compos. Struct., 165, 250-265. https://doi.org/10.1016/j.compstruct.2017.01.032
  43. Lim, C.W., Zhang, G. and Redd, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001
  44. Mehrabadi, S.J., Aragh, B.S., Khoshkhahesh, V. and Taherpour, A. (2012), "Mechanical buckling of nanocomposite rectangular plates reinforced by aligned and straight single-walled carbon nanotubes", Compos. Part B Eng., 43(4), 2031-2040. https://doi.org/10.1016/j.compositesb.2012.01.067
  45. Mindlin, R.D. (1963), "Microstructure in linear elasticity", Columbia Univ New York, Dept of Civil Engineering and Engineering Mechanics. https://doi.org/10.1007/BF00248490
  46. Mohamed, N., Mohamed, S.A. and Eltaher, M.A. (2020), "Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-020-00976-2
  47. Nejad, M.Z., Hadi, A. Omidvari, A. and Rastgoo, A. (2018), "Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's nonlocal elasticity theory", Struct. Eng. Mech., 67(4), 417-425. https://doi.org/10.12989/sem.2018.67.4.417
  48. Nguyen, V.H., Nguyen, T.K. Thai, H.T. and Vo, T.P. (2014), "A new inverse trigonometric shear deformation theory for isotropic and functionally graded sandwich plates", Compos. Part B Eng., 66, 233-246. https://doi.org/10.1016/j.compositesb.2014.05.012
  49. Rajasekaran, S. and Bakhshi Khaniki, H. (2019), "Finite element static and dynamic analysis of axially functionally graded nonuniform small-scale beams based on nonlocal strain gradient theory", Mech. Adv. Mater. Struct., 26(14), 1245-1259. https://doi.org/10.1080/15376494.2018.1432797
  50. Sarkar, K. and Ganguli, R. (2014), "Closed-form solutions for axially functionally graded Timoshenko beams having uniform cross-section and fixed-fixed boundary condition", Compos. Part B Eng., 58, 361-370. https://doi.org/10.1016/j.compositesb.2013.10.077
  51. Shafiei, N., Kazemi, M. Safi, M. and Ghadiri, M. (2016), "Nonlinear vibration of axially functionally graded non-uniform nanobeams", Int. J. Eng. Sci., 106, 77-94. https://doi.org/10.1016/j.ijengsci.2016.05.009
  52. Shen, H.S., (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026
  53. Shen, H.S., He, X.Q. and Yang, D.Q. (2017), "Vibration of thermally postbuckled carbon nanotube-reinforced composite beams resting on elastic foundations", Int. J. Non-Linear Mech., 91, 69-75. https://doi.org/10.1016/j.ijnonlinmec.2017.02.010
  54. Simsek, M. (2015), "Size dependent nonlinear free vibration of an axially functionally graded (AFG) microbeam using He's variational method", Compos. Struct., 131, 207-214. https://doi.org/10.1016/j.compstruct.2015.05.004
  55. Thai, C.H., Zenkour, A. Wahab, M.A. and Nguyen-Xuan, H. (2016), "A simple four-unknown shear and normal deformations theory for functionally graded isotropic and sandwich plates based on isogeometric analysis", Compos. Struct., 139, 77-95. https://doi.org/10.1016/j.compstruct.2015.11.066
  56. Tornabene, F., Bacciocchi, M., Fantuzzi, N. and Reddy, J. N. (2019). "A multiscale approach for Three-Phase CNT/Polymer/Fiber laminated nanocomposite structures", Polym. Compos., 40, 102-126. https://doi.org/10.1002/pc.24520
  57. Vo, T.P., Thai, H.T. Nguyen, T.K. Inam, F.and Lee, J. (2015), "A quasi-3D theory for vibration and buckling of functionally graded sandwich beams", Compos. Struct., 119, 1-12. https://doi.org/10.1016/j.compstruct.2014.08.006
  58. Wang, Y. and Wu, D. (2016), "Thermal effect on the dynamic response of axially functionally graded beam subjected to a moving harmonic load", Acta Astronautica, 127, 171-181. https://doi.org/10.1016/j.actaastro.2016.05.030
  59. Wang, Y., Ren, H. Fu, T.and Shi, C. (2020), "Hygrothermal mechanical behaviors of axially functionally graded micro-beams using a refined first order shear deformation theory", Acta Astronautica, 166, 306-316. https://doi.org/10.1016/j.actaastro.2019.10.036
  60. Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Comput. Mater. Sci., 71, 201-208. http://doi.org/10.1016/j.commatsci.2013.01.028
  61. Yang, F., Chong, A., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
  62. Zenkour, A. and Radwan, A. (2020), "Bending and buckling analysis of FGM plates resting on elastic foundations in hygrothermal environment", Arch. Civil Mech. Eng., 20(4), 1-23. https://doi.org/10.1007/s43452-020-00116-z
  63. Zhen, Y.X., Wen, S.L. and Tang, Y. (2019), "Free vibration analysis of viscoelastic nanotubes under longitudinal magnetic field based on nonlocal strain gradient Timoshenko beam model", Physica E, 105, 116-124 . https://doi.org/10.1016/j.physe.2018.09.005