DOI QR코드

DOI QR Code

Comprehensive study of internal modals interactions: Comparison of various axial nonlinear beam theories

  • 투고 : 2021.04.20
  • 심사 : 2024.01.28
  • 발행 : 2024.03.25

초록

The geometrical nonlinear vibrations of the gold nanoscale rod are investigated for the first time by considering the internal modals interactions using different nonlinear beam theories. This phenomenon is usually one of the important features of nonlinear vibration systems. For a more detailed analysis, the von-Karman effects, preserving all the nonlinear terms in the strain-displacement relationships of gold nanoscale rods in three displacement directions, are considered to analyze the nonlinear axial vibrations of gold nanoscale rods. It uses highly accurate analytical-numerical solutions for the clamped-clamped and clamped-free boundary conditions of nanoscale gold rods. Also, with the help of Hamilton's principle, the governing equation and boundary conditions are derived based on Eringen's theory. The influence of nonlinear and nonlocal factors on axial vibrations was investigated separately for all three theories: Simple (ST), Rayleigh (RT) and Bishop (BT). Using different theories, the effects of inertia and shear on the internal resonances of gold nanorods were studied and compared in terms of twoto-one and three-to-one internal resonances. As the nonlocal parameter of the gold nanorod increases, the maximum nonlinear amplitude occurs. So, by adding nonlocal effects in a gold nanorod, the internal modal interactions resulting from the unique structure can be enhanced. It is worth noting that shear and inertial analysis have a significant effect on internal modal interactions in gold nanorods.

키워드

참고문헌

  1. Amabili, M. (2018), "Nonlinear damping in large-amplitude vibrations: modelling and experiments", Nonlinear Dyn., 93(1), 5-18, https://doi.org/10.1007/s11071-017-3889-z
  2. Abadeer, N.S. and Catherine J.M. (2016), "Recent progress in cancer thermal therapy using gold nanoparticles", J. Phys. Chem., 120(9), 4691-716. https://doi.org/10.1021/acs.jpcc.5b11232
  3. Arvizo, R., Resham B. and Priyabrata M. (2010), "Gold nanoparticles: opportunities and challenges in nanomedicine", Expert Opin. Drug Discover., 7, 753-763. https://doi.org/10.1517/17425241003777010
  4. Aydogdu, M. (2009), "Axial vibration of the nanorods with the nonlocal continuum rod model", Physica E, 41, 861-64. https://doi.org/10.1016/j.physe.2009.01.007
  5. Aydogdu, M. (2015), "A nonlocal rod model for axial vibration of double-walled carbon nanotubes including axial van der Waals force effects", J. Vib. Control, 21, 3132-54. https://doi.org/10.1177/1077546313518954
  6. An, L., Wang, Y., Tian, Q. and Yang, S. (2017), "Small gold nanorods: recent advances in synthesis, biological imaging, and cancer therapy", Materials, 10(12), 1372. https://doi.org/10.3390/ma10121372
  7. Bert, C.W. and Moinuddin, M. (1996), "Differential quadrature method in computational mechanics: A review", Appl. Mech. Rev. Jan, 49(1), 1-28. https://doi.org/10.1115/1.3101882
  8. Bacigalupo, A. and Gambarotta, L. (2019). Generalized micropolar continualization of 1D beam lattices. Int. J. Mech. Sci, 155, 554-570. https://doi.org/10.1016/j.ijmecsci.2019.02.018
  9. Bacigalupo, A. and Gambarotta, L. (2021), "Identification of nonlocal continua for lattice-like materials", Int. J. Eng. Sci., 159, 103430. https://doi.org/10.1016/j.ijengsci.2020.103430
  10. Civalek, O. (2004), "Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns", Eng. Struct. 26, 171-186. https://doi.org/10.1016/j.engstruct.2003.09.005
  11. Choi, H.S., Liu, W., Liu, F., Nasr, K., Misra, P., Bawendi, M.G. and Frangioni, J.V. (2010), "Design considerations for tumour-targeted nanoparticles", Nat. Nanotechnol, 5(1), 42-47. https://doi.org/10.1038/nnano.2009.314
  12. Civalek, O. and Numanoglu, H.M. (2020), "Nonlocal finite element analysis for axial vibration of embedded love-bishop nanorods", Int. J. Mech. Sci., 188, 105939, https://doi.org/10.1016/j.ijmecsci.2020.105939
  13. Eltaher, M.A, Khater, M.E, and Samir A.E. (2016), "A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams", Appl. Math. Modell, 40, 4109-4128. https://doi.org/10.1016/j.apm.2015.11.026
  14. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-10. https://doi.org/10.1063/1.332803
  15. Eringen, A.C. (1976), Nonlocal Polar Field Models, New York: Academic.
  16. Faroughi, S. and Seyed Mohammad Hossein, G. (2016), "Analysis of axial vibration of non-uniform nanorod using boundary characteristic orthogonal polynomials", Modares Mech. Eng., 16, 203-212, http://mme.modares.ac.ir/article-15-528-en.html
  17. Fernandes, R., El-Borgi, S. Mousavi, S.M., Reddy, J.N. and Mechmoum, A. (2017), "Nonlinear size-dependent longitudinal vibration of carbon nanotubes embedded in an elastic medium", Physica E, 88, 18-25. https://doi.org/10.1016/j.physe.2016.11.007
  18. Guven, U. (2014), "Love-Bishop rod solution based on strain gradient elasticity theory", C.R. Mec, 342, 8-16. https://doi.org/10.1016/j.crme.2013.10.011
  19. Gomez-Silva, F. and Zaera, R. (2022a), "Novel Enriched Kinetic Energy continuum model for the enhanced prediction of a 1D lattice with next-nearest interactions", Compos. Struct., 281, 115003. https://doi.org/10.1016/j.compstruct.2021.115003
  20. Gomez-Silva, F. and Zaera, R. (2022b), "Low order nonstandard continualization of a beam lattice with next-nearest interactions, Enhanced prediction of the dynamic behavior", Mech. Adv. Mater. Struct., 29(27), 6216-6230. https://doi.org/10.1080/15376494.2021.1974616
  21. Gomez-Silva, F. and Zaera, R. (2022c), "New low-order continuum models for the dynamics of a Timoshenko beam lattice with next-nearest interactions", Comput Struct., 272, 106864. https://doi.org/10.1016/j.compstruc.2022.106864
  22. Hainfeld, J.F., Dilmanian F.A., Zhong Z., Daniel N.S., John A.K. and Henry, M.S. (2010), "Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma", Phys. Med. Biol. 55, 3045. https://doi.org/10.1088/0031-9155/55/11/004
  23. He, Y.Q., Shao, P.L., Ling, K. and Zhong, F.L. (2005), "A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance nonlinear scattering", Spectrochim. Acta, Part A, 61, 2861-66. https://doi.org/10.1016/j.saa.2004.10.035
  24. Hsu, J.C., Haw, L. and Win-Jin, C. (2011), "Longitudinal vibration of cracked nanobeams using nonlocal elasticity theory", Curr. Appl. Phys. 11, 1384-1388. https://doi.org/10.1016/j.cap.2011.04.026
  25. Karlicic, D., Milan, C., Tony, M. and Sondipon A. (2015), "Nonlocal longitudinal vibration of viscoelastic coupled double-nanorod systems", Eur. J. Mech. A. Solids 49, 183-196. https://doi.org/10.1016/j.euromechsol.2014.07.005
  26. Kiani, K. (2010), "Free longitudinal vibration of tapered nanowires in the context of nonlocal continuum theory via a perturbation technique", Physica E, 43, 387-97. https://doi.org/10.1016/j.physe.2010.08.022
  27. Kik, P.G. and Mark, L.B. (2007), Surface Plasmon Nanophotonics, Surface Plasmon Nanophotonics, Springer Book.
  28. Kumar, R., Binetti, L., Nguyen, T.H., Alwis, L.S., Agrawal, A., Sun, T. and Grattan, K.T. (2019), "Determination of the aspectratio distribution of gold nanorods in a colloidal solution using UV-visible absorption spectroscopy", Sci. Rep., 9(1), 17469.
  29. Li, X.F., Zhi-Bin She, and Kang, Y.L. (2017), "Axial wave propagation and vibration of nonlocal nanorods with radial deformation and inertia", ZAMM, 97, 602-616. https://doi.org/10.1002/zamm.201500186
  30. Louis, C. and Olivier, P. (2012), Gold Nanoparticles in the Past, Before the Nanotechnology Era, Gold Nanoparticles for Physics, Chemistry And Biology, 1, Book.
  31. Malekzadeh, P. and Karami, G. (2005), "Polynomial and harmonic differential quadrature methods for free vibration of variable thickness thick skew plates", Eng Struct, 27, 1563-1574. https://doi.org/10.1016/j.engstruct.2005.03.017
  32. Miller, K.D, Rebecca, L.S., Chun, C.L., Angela, B.M., Joan, L.K., Julia, H.R, Kevin, D.S., Rick, A. and Ahmedin, J. (2016), "Cancer treatment and survivorship statistics", CA Cancer J Clin, 66, 271-289. https://doi.org/10.3322/caac.21349
  33. Morton, J.G, Emily, S.D., Naomi, J.H. and Jennifer, L.W. (2010), Nanoshells for Photothermal Cancer Therapy, Cancer nanotechnology, Springer Book.
  34. Mousavi, S.M, and Fariborz, S.J. (2012), Free Vibration of a Rod Undergoing Finite Strain, Journal of Physics, Conference Series, 012011. IOP Publishing.
  35. Murmu, T, and Adhikari, S. (2010), "Nonlocal effects in the longitudinal vibration of double-nanorod systems", Physica E, 43, 415-22. https://doi.org/10.1016/j.physe.2010.08.023
  36. Murmu, T., Adhikari, S. and McCarthy, M.A. (2014), "Axial vibration of embedded nanorods under transverse magnetic field effects via nonlocal elastic continuum theory", J. Comput. Theor. Nanosci. 11, 1230-1236. https://doi.org/10.1166/jctn.2014.3487
  37. Narendar, S. and Gopalakrishnan, S. (2011), "Axial wave propagation in coupled nanorod system with nonlocal small scale effects", Compos. Part B, 42, 2013-2023. https://doi.org/10.1016/j.compositesb.2011.05.021
  38. Nayfeh, A.H. and Nayfeh, S.A. (1994), "On nonlinear modes of continuous systems", Tsukuba.
  39. Nazemnezhad, R. and Kamran, K. (2018a), "An analytical study on the size dependent longitudinal vibration analysis of thick nanorods", Mater. Res. Express 5, 075016. https://doi.org/10.1088/2053-1591/aacf6e/meta
  40. Nazemnezhad, R. and Kamran, K. (2018b), "Free axial vibration analysis of axially functionally graded thick nanorods using nonlocal Bishop's theory", Steel. Compos. Struct., 28, 749-758. https://doi.org/10.12989/scs.2018.28.6.749
  41. Nazemnezhad, R., Ruhollah, M. and Amin, S. (2019), "Surface energy effect on nonlinear free axial vibration and internal resonances of nanoscale rods", Eur. J. Mech. A. Solids, 77, 103784. https://doi.org/10.1016/j.euromechsol.2019.05.001
  42. Pitsillides, C.M., Joe, E.K., Wei, X. anderson, R.R. and Lin, C.P. (2003), "Selective cell targeting with light-absorbing microparticles and nanoparticles", Biophys. J., 84(6), 4023-4032. https://doi.org/10.1016/S0006-3495(03)75128-5
  43. Rao, S.S. (2019), Vibration of Continuous Systems, John Wiley & Sons, New York, U.S.A.
  44. Saha, K., Sarit, S.A., Chaekyu, K., Xiaoning, L. and Vincent, M. R. (2012), "Gold nanoparticles in chemical and biological sensing", Chem. Rev., 112, 2739-2779. https://doi.org/10.1021/cr2001178
  45. Shakhlavi, S.J., Hosseini-Hashemi, S. and Nazemnezhad, R. (2022a), "Thermal stress effects on size-dependent nonlinear axial vibrations of nanorods exposed to magnetic fields surrounded by nonlinear elastic medium", J. Therm. Stress., 45(2), 139-153. https://doi.org/10.1080/01495739.2021.2003275
  46. Shakhlavi, S.J., Hosseini-Hashemi, S. and Nazemnezhad, R. (2022b), "Nonlinear nano-rod-type analysis of internal resonances and geometrically considering nonlocal and inertial effects in terms of Rayleigh axial vibrations". Eur. Phys. J. Plus, 137(4), 1-20. https://doi.org/10.1140/epjp/s13360-022-02594-x
  47. Shakhlavi, S.J., Nazemnezhad, R., Hosseini-Hashemi, S. and Amabili, M. (2021a), "Analysis of nonlinear nonlocal axial free vibrations of gold nanoscale rod", Proceedings of the 29th Annual International Conference of Iranian Association of Mechanical Engineers and 8th International Conference on Thermal Power Plants Industry, Tehran.
  48. Shakhlavi, S.J., Nazemnezhad, R., Hosseini-Hashemi, S. and Amabili, M. (2021b), "On nonlocal nonlinear internal resonances of gold nanoscale rod", Proceedings of the 10th International Conference on Acoustics and Vibration, Tehran.
  49. Shakhlavi, S.J., Nazemnezhad, R. and Hosseini-Hashemi, S. (2020), "On nonlinear torsional vibrations of nanorod", Proceedings of the 28th Annual Conference of Mechanical Engineering, Tehran.
  50. Shakhlavi, S.J. (2023), "On nonlinear damping effects with nonlinear temperature-dependent properties for an axial thermo-viscoelastic rod", Int. J. Non Linear Mech, 153, 104418. https://doi.org/10.1016/j.ijnonlinmec.2023.104418
  51. Shakhlavi, S.J., Shahrokh, H.H. and Nazemnezhad, R. (2020), "Torsional vibrations investigation of nonlinear nonlocal behaviour in terms of functionally graded nanotubes", Int. J. Non Linear Mech, 103513. https://doi.org/10.1016/j.ijnonlinmec.2020.103513
  52. Shakhlavi, S.J. (2024), "Nonlinear nonlocal damping effects under magnetic loads of a ferromagnetic-viscoelastic nanotube exposed to a nonlinear elastic medium with nonlocal viscosity", Commun. Nonlinear Sci. Numer. Simul., 130, 107690. https://doi.org/10.1016/j.cnsns.2023.107690
  53. Shakhlavi, S.J. and Nazemnezhad, R. (2024), "Study on derivation from large amplitude size dependent internal resonances of homogeneous and FG rod-types", Adv. Nano Res, 16(2), 111. https://doi.org/10.12989/anr.2024.16.2.111
  54. Striz, A.G., Wang, X. and Bert, C.W. (1995), "Harmonic differential quadrature method and applications to analysis of structural components", Acta Mech., 111, 85-94. https://doi.org/10.1007/BF01187729
  55. Sun, Y. and Younan, X. (2003)."'Gold and silver nanoparticles, a class of chromophores with colors tunable in the range from 400 to 750 nm", Analyst, 128, 686-91. https://doi.org/10.1039/B212437H