References
- Amabili, M. (2018), "Nonlinear damping in large-amplitude vibrations: modelling and experiments", Nonlinear Dyn., 93(1), 5-18, https://doi.org/10.1007/s11071-017-3889-z
- Abadeer, N.S. and Catherine J.M. (2016), "Recent progress in cancer thermal therapy using gold nanoparticles", J. Phys. Chem., 120(9), 4691-716. https://doi.org/10.1021/acs.jpcc.5b11232
- Arvizo, R., Resham B. and Priyabrata M. (2010), "Gold nanoparticles: opportunities and challenges in nanomedicine", Expert Opin. Drug Discover., 7, 753-763. https://doi.org/10.1517/17425241003777010
- Aydogdu, M. (2009), "Axial vibration of the nanorods with the nonlocal continuum rod model", Physica E, 41, 861-64. https://doi.org/10.1016/j.physe.2009.01.007
- Aydogdu, M. (2015), "A nonlocal rod model for axial vibration of double-walled carbon nanotubes including axial van der Waals force effects", J. Vib. Control, 21, 3132-54. https://doi.org/10.1177/1077546313518954
- An, L., Wang, Y., Tian, Q. and Yang, S. (2017), "Small gold nanorods: recent advances in synthesis, biological imaging, and cancer therapy", Materials, 10(12), 1372. https://doi.org/10.3390/ma10121372
- Bert, C.W. and Moinuddin, M. (1996), "Differential quadrature method in computational mechanics: A review", Appl. Mech. Rev. Jan, 49(1), 1-28. https://doi.org/10.1115/1.3101882
- Bacigalupo, A. and Gambarotta, L. (2019). Generalized micropolar continualization of 1D beam lattices. Int. J. Mech. Sci, 155, 554-570. https://doi.org/10.1016/j.ijmecsci.2019.02.018
- Bacigalupo, A. and Gambarotta, L. (2021), "Identification of nonlocal continua for lattice-like materials", Int. J. Eng. Sci., 159, 103430. https://doi.org/10.1016/j.ijengsci.2020.103430
- Civalek, O. (2004), "Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns", Eng. Struct. 26, 171-186. https://doi.org/10.1016/j.engstruct.2003.09.005
- Choi, H.S., Liu, W., Liu, F., Nasr, K., Misra, P., Bawendi, M.G. and Frangioni, J.V. (2010), "Design considerations for tumour-targeted nanoparticles", Nat. Nanotechnol, 5(1), 42-47. https://doi.org/10.1038/nnano.2009.314
- Civalek, O. and Numanoglu, H.M. (2020), "Nonlocal finite element analysis for axial vibration of embedded love-bishop nanorods", Int. J. Mech. Sci., 188, 105939, https://doi.org/10.1016/j.ijmecsci.2020.105939
- Eltaher, M.A, Khater, M.E, and Samir A.E. (2016), "A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams", Appl. Math. Modell, 40, 4109-4128. https://doi.org/10.1016/j.apm.2015.11.026
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-10. https://doi.org/10.1063/1.332803
- Eringen, A.C. (1976), Nonlocal Polar Field Models, New York: Academic.
- Faroughi, S. and Seyed Mohammad Hossein, G. (2016), "Analysis of axial vibration of non-uniform nanorod using boundary characteristic orthogonal polynomials", Modares Mech. Eng., 16, 203-212, http://mme.modares.ac.ir/article-15-528-en.html
- Fernandes, R., El-Borgi, S. Mousavi, S.M., Reddy, J.N. and Mechmoum, A. (2017), "Nonlinear size-dependent longitudinal vibration of carbon nanotubes embedded in an elastic medium", Physica E, 88, 18-25. https://doi.org/10.1016/j.physe.2016.11.007
- Guven, U. (2014), "Love-Bishop rod solution based on strain gradient elasticity theory", C.R. Mec, 342, 8-16. https://doi.org/10.1016/j.crme.2013.10.011
- Gomez-Silva, F. and Zaera, R. (2022a), "Novel Enriched Kinetic Energy continuum model for the enhanced prediction of a 1D lattice with next-nearest interactions", Compos. Struct., 281, 115003. https://doi.org/10.1016/j.compstruct.2021.115003
- Gomez-Silva, F. and Zaera, R. (2022b), "Low order nonstandard continualization of a beam lattice with next-nearest interactions, Enhanced prediction of the dynamic behavior", Mech. Adv. Mater. Struct., 29(27), 6216-6230. https://doi.org/10.1080/15376494.2021.1974616
- Gomez-Silva, F. and Zaera, R. (2022c), "New low-order continuum models for the dynamics of a Timoshenko beam lattice with next-nearest interactions", Comput Struct., 272, 106864. https://doi.org/10.1016/j.compstruc.2022.106864
- Hainfeld, J.F., Dilmanian F.A., Zhong Z., Daniel N.S., John A.K. and Henry, M.S. (2010), "Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma", Phys. Med. Biol. 55, 3045. https://doi.org/10.1088/0031-9155/55/11/004
- He, Y.Q., Shao, P.L., Ling, K. and Zhong, F.L. (2005), "A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance nonlinear scattering", Spectrochim. Acta, Part A, 61, 2861-66. https://doi.org/10.1016/j.saa.2004.10.035
- Hsu, J.C., Haw, L. and Win-Jin, C. (2011), "Longitudinal vibration of cracked nanobeams using nonlocal elasticity theory", Curr. Appl. Phys. 11, 1384-1388. https://doi.org/10.1016/j.cap.2011.04.026
- Karlicic, D., Milan, C., Tony, M. and Sondipon A. (2015), "Nonlocal longitudinal vibration of viscoelastic coupled double-nanorod systems", Eur. J. Mech. A. Solids 49, 183-196. https://doi.org/10.1016/j.euromechsol.2014.07.005
- Kiani, K. (2010), "Free longitudinal vibration of tapered nanowires in the context of nonlocal continuum theory via a perturbation technique", Physica E, 43, 387-97. https://doi.org/10.1016/j.physe.2010.08.022
- Kik, P.G. and Mark, L.B. (2007), Surface Plasmon Nanophotonics, Surface Plasmon Nanophotonics, Springer Book.
- Kumar, R., Binetti, L., Nguyen, T.H., Alwis, L.S., Agrawal, A., Sun, T. and Grattan, K.T. (2019), "Determination of the aspectratio distribution of gold nanorods in a colloidal solution using UV-visible absorption spectroscopy", Sci. Rep., 9(1), 17469.
- Li, X.F., Zhi-Bin She, and Kang, Y.L. (2017), "Axial wave propagation and vibration of nonlocal nanorods with radial deformation and inertia", ZAMM, 97, 602-616. https://doi.org/10.1002/zamm.201500186
- Louis, C. and Olivier, P. (2012), Gold Nanoparticles in the Past, Before the Nanotechnology Era, Gold Nanoparticles for Physics, Chemistry And Biology, 1, Book.
- Malekzadeh, P. and Karami, G. (2005), "Polynomial and harmonic differential quadrature methods for free vibration of variable thickness thick skew plates", Eng Struct, 27, 1563-1574. https://doi.org/10.1016/j.engstruct.2005.03.017
- Miller, K.D, Rebecca, L.S., Chun, C.L., Angela, B.M., Joan, L.K., Julia, H.R, Kevin, D.S., Rick, A. and Ahmedin, J. (2016), "Cancer treatment and survivorship statistics", CA Cancer J Clin, 66, 271-289. https://doi.org/10.3322/caac.21349
- Morton, J.G, Emily, S.D., Naomi, J.H. and Jennifer, L.W. (2010), Nanoshells for Photothermal Cancer Therapy, Cancer nanotechnology, Springer Book.
- Mousavi, S.M, and Fariborz, S.J. (2012), Free Vibration of a Rod Undergoing Finite Strain, Journal of Physics, Conference Series, 012011. IOP Publishing.
- Murmu, T, and Adhikari, S. (2010), "Nonlocal effects in the longitudinal vibration of double-nanorod systems", Physica E, 43, 415-22. https://doi.org/10.1016/j.physe.2010.08.023
- Murmu, T., Adhikari, S. and McCarthy, M.A. (2014), "Axial vibration of embedded nanorods under transverse magnetic field effects via nonlocal elastic continuum theory", J. Comput. Theor. Nanosci. 11, 1230-1236. https://doi.org/10.1166/jctn.2014.3487
- Narendar, S. and Gopalakrishnan, S. (2011), "Axial wave propagation in coupled nanorod system with nonlocal small scale effects", Compos. Part B, 42, 2013-2023. https://doi.org/10.1016/j.compositesb.2011.05.021
- Nayfeh, A.H. and Nayfeh, S.A. (1994), "On nonlinear modes of continuous systems", Tsukuba.
- Nazemnezhad, R. and Kamran, K. (2018a), "An analytical study on the size dependent longitudinal vibration analysis of thick nanorods", Mater. Res. Express 5, 075016. https://doi.org/10.1088/2053-1591/aacf6e/meta
- Nazemnezhad, R. and Kamran, K. (2018b), "Free axial vibration analysis of axially functionally graded thick nanorods using nonlocal Bishop's theory", Steel. Compos. Struct., 28, 749-758. https://doi.org/10.12989/scs.2018.28.6.749
- Nazemnezhad, R., Ruhollah, M. and Amin, S. (2019), "Surface energy effect on nonlinear free axial vibration and internal resonances of nanoscale rods", Eur. J. Mech. A. Solids, 77, 103784. https://doi.org/10.1016/j.euromechsol.2019.05.001
- Pitsillides, C.M., Joe, E.K., Wei, X. anderson, R.R. and Lin, C.P. (2003), "Selective cell targeting with light-absorbing microparticles and nanoparticles", Biophys. J., 84(6), 4023-4032. https://doi.org/10.1016/S0006-3495(03)75128-5
- Rao, S.S. (2019), Vibration of Continuous Systems, John Wiley & Sons, New York, U.S.A.
- Saha, K., Sarit, S.A., Chaekyu, K., Xiaoning, L. and Vincent, M. R. (2012), "Gold nanoparticles in chemical and biological sensing", Chem. Rev., 112, 2739-2779. https://doi.org/10.1021/cr2001178
- Shakhlavi, S.J., Hosseini-Hashemi, S. and Nazemnezhad, R. (2022a), "Thermal stress effects on size-dependent nonlinear axial vibrations of nanorods exposed to magnetic fields surrounded by nonlinear elastic medium", J. Therm. Stress., 45(2), 139-153. https://doi.org/10.1080/01495739.2021.2003275
- Shakhlavi, S.J., Hosseini-Hashemi, S. and Nazemnezhad, R. (2022b), "Nonlinear nano-rod-type analysis of internal resonances and geometrically considering nonlocal and inertial effects in terms of Rayleigh axial vibrations". Eur. Phys. J. Plus, 137(4), 1-20. https://doi.org/10.1140/epjp/s13360-022-02594-x
- Shakhlavi, S.J., Nazemnezhad, R., Hosseini-Hashemi, S. and Amabili, M. (2021a), "Analysis of nonlinear nonlocal axial free vibrations of gold nanoscale rod", Proceedings of the 29th Annual International Conference of Iranian Association of Mechanical Engineers and 8th International Conference on Thermal Power Plants Industry, Tehran.
- Shakhlavi, S.J., Nazemnezhad, R., Hosseini-Hashemi, S. and Amabili, M. (2021b), "On nonlocal nonlinear internal resonances of gold nanoscale rod", Proceedings of the 10th International Conference on Acoustics and Vibration, Tehran.
- Shakhlavi, S.J., Nazemnezhad, R. and Hosseini-Hashemi, S. (2020), "On nonlinear torsional vibrations of nanorod", Proceedings of the 28th Annual Conference of Mechanical Engineering, Tehran.
- Shakhlavi, S.J. (2023), "On nonlinear damping effects with nonlinear temperature-dependent properties for an axial thermo-viscoelastic rod", Int. J. Non Linear Mech, 153, 104418. https://doi.org/10.1016/j.ijnonlinmec.2023.104418
- Shakhlavi, S.J., Shahrokh, H.H. and Nazemnezhad, R. (2020), "Torsional vibrations investigation of nonlinear nonlocal behaviour in terms of functionally graded nanotubes", Int. J. Non Linear Mech, 103513. https://doi.org/10.1016/j.ijnonlinmec.2020.103513
- Shakhlavi, S.J. (2024), "Nonlinear nonlocal damping effects under magnetic loads of a ferromagnetic-viscoelastic nanotube exposed to a nonlinear elastic medium with nonlocal viscosity", Commun. Nonlinear Sci. Numer. Simul., 130, 107690. https://doi.org/10.1016/j.cnsns.2023.107690
- Shakhlavi, S.J. and Nazemnezhad, R. (2024), "Study on derivation from large amplitude size dependent internal resonances of homogeneous and FG rod-types", Adv. Nano Res, 16(2), 111. https://doi.org/10.12989/anr.2024.16.2.111
- Striz, A.G., Wang, X. and Bert, C.W. (1995), "Harmonic differential quadrature method and applications to analysis of structural components", Acta Mech., 111, 85-94. https://doi.org/10.1007/BF01187729
- Sun, Y. and Younan, X. (2003)."'Gold and silver nanoparticles, a class of chromophores with colors tunable in the range from 400 to 750 nm", Analyst, 128, 686-91. https://doi.org/10.1039/B212437H