DOI QR코드

DOI QR Code

Static bending study of AFG nanobeam using local stress-and strain-driven nonlocal integral models

  • Yuan Tang (State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics) ;
  • Hai Qing (State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics)
  • Received : 2021.11.25
  • Accepted : 2024.01.27
  • Published : 2024.03.25

Abstract

In this paper, the problem of static bending of axially functionally graded (AFG) nanobeam is formulated with the local stress(Lσ)- and strain-driven(εD) two-phase local/nonlocal integral models (TPNIMs). The novelty of the present study aims to compare the size-effects of nonlocal integral models on bending deflections of AFG Euler-Bernoulli nano-beams. The integral relation between strain and nonlocal stress components based on two types nonlocal integral models is transformed unitedly and equivalently into differential form with constitutive boundary conditions. Purely LσD- and εD-NIMs would lead to ill-posed mathematical formulation, and Purely εD- and LσD-nonlocal differential models (NDM) may result in inconsistent size-dependent bending responses. The general differential quadrature method is applied to obtain the numerical results for bending deflection and moment of AFG nanobeam subjected to different boundary and loading conditions. The influence of AFG index, nonlocal models, and nonlocal parameters on the bending deflections of AFG Euler-Bernoulli nanobeams is investigated numerically. A consistent softening effects can be obtained for both LσD- and εD-TPNIMs. The results from current work may provide useful guidelines for designing and optimizing AFG Euler-Bernoulli beam based nano instruments.

Keywords

Acknowledgement

The work is supported by the National Natural Science Foundation of China (No. 12172169) and the Priority Academic Program Development of Jiangsu Higher Education Institutions. The author (Tang) is also grateful for the scholarship provided by the China Scholarship Council (202106830094).

References

  1. Allam, M.N.M. and Radwan, A.F. (2019), "Nonlocal strain gradient theory for bending, buckling, and vibration of viscoelastic functionally graded curved nanobeam embedded in an elastic medium", Adv. Mech. Eng., 11(4). https://doi.org/10.1177/1687814019837067.
  2. Ansari, R., Oskouie, M.F., Roghani, M. and Rouhi, H. (2021), "Nonlinear analysis of laminated FG-GPLRC beams resting on an elastic foundation based on the two-phase stress-driven nonlocal model", Acta Mechanica, 232(6), 2183-2199. https://doi.org/10.1007/s00707-021-02935-4.
  3. Arefi, M. and Zenkour, A.M. (2016), "A simplified shear and normal deformations nonlocal theory for bending of functionally graded piezomagnetic sandwich nanobeams in magneto-thermoelectric environment", J. Sandw. Struct. Mater., 18(5), 624-651. https://doi.org/10.1177/1099636216652581
  4. Batra, R.C. (2021), "Misuse of Eringen's nonlocal elasticity theory for functionally graded materials", Int. J. Eng. Sci., 159. https://doi.org/10.1016/j.ijengsci.2020.103425.
  5. Bellman, R., Kashef, B.G. and Casti, J. (1972), "Differential quadrature: A technique for the rapid solution of nonlinear partial differential Eqs.", J. Comput. Phys., 10(1), 40-52. https://doi.org/10.1016/0021-9991(72)90089-7
  6. Benvenuti, E. and Simone, A. (2013), "One-dimensional nonlocal and gradient elasticity: Closed-form solution and size effect", Mech. Res. Commun., 48, 46-51. https://doi.org/10.1016/j.mechrescom.2012.12.001.
  7. Bian, P.L. and Qing, H. (2021), "On bending consistency of Timoshenko beam using differential and integral nonlocal strain gradient models", Zamm-Zeitschrift Fur Angewandte Mathematik Und Mechanik, 101(8). https://doi.org/10.1002/zamm.202000132.
  8. Challamel, N. and Wang, C.M. (2008), "The small length scale effect for a non-local cantilever beam: a paradox solved", Nanotechnology, 19(34), 7. https://doi.org/10.1088/0957-4484/19/34/345703.
  9. E.Kroner. (1967), "Elasticity theory of materials with long range cohesive forces", Int. J. Solids Struct., 3(3), 12.
  10. Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2013), "Static and stability analysis of nonlocal functionally graded nanobeams", Compos. Struct., 96, 82-88. https://doi.org/10.1016/j.compstruct.2012.09.030.
  11. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
  12. Eringen, A.C. (1987), "Theory of nonlocal elasticity and some applications", Res Mechanica, 21(4), 313-342.
  13. Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
  14. Fernandez-Saez, J., Zaera, R., Loya, J.A. and Reddy, J.N. (2016), "Bending of Euler-Bernoulli beams using Eringen's integral formulation: A paradox resolved", Int. J. Eng. Sci., 99, 107-116. https://doi.org/10.1016/j.ijengsci.2015.10.013.
  15. Gorgani, H.H., Adeli, M.M. and Hosseini, M. (2019), "Pull-in behavior of functionally graded micro/nano-beams for MEMS and NEMS switches", Microsyst. Technol. Micro Nanosyst. Inform., 25(8), 3165-3173. https://doi.org/10.1007/s00542-018-4216-4.
  16. Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B Eng., 28(1-2), 1-4. https://doi.org/10.1016/s1359-8368(96)00016-9.
  17. Komijani, M., Reddy, J.N. and Eslami, M.R. (2014), "Nonlinear analysis of microstructure-dependent functionally graded piezoelectric material actuators", J. Mech. Phys. Solids, 63, 214-227. https://doi.org/10.1016/j.jmps.2013.09.008.
  18. Koutsoumaris, C.C. and Eptaimeros, K.G. (2021), "Nonlocal integral static problems of nanobeams resting on an elastic foundation", Eur. J. Mech. A Solids, 89. https://doi.org/10.1016/j.euromechsol.2021.104295.
  19. Koutsoumaris, C.C., Eptaimeros, K.G. and Tsamasphyros, G.J. (2017), "A different approach to Eringen's nonlocal integral stress model with applications for beams", Int. J. Solids Struct., 112, 222-238. https://doi.org/10.1016/j.ijsolstr.2016.09.007.
  20. Li, C., Qing, H. and Gao, C. (2021), "Theoretical analysis for static bending of Euler-Bernoulli beam using different nonlocal gradient models", Mech. Adv. Mater. Struct., 28(19), 1965-1977. https://doi.org/10.1080/15376494.2020.1716121.
  21. Li, C., Yao, L.Q., Chen, W.Q. and Li, S. (2015), "Comments on nonlocal effects in nano-cantilever beams", Int. J. Eng. Sci., 87, 47-57. https://doi.org/10.1016/j.ijengsci.2014.11.006.
  22. Li, L. and Hu, Y.J. (2016), "Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 107, 77-97. https://doi.org/10.1016/j.ijengsci.2016.07.011.
  23. Li, X.B., Li, L., Hu, Y.J., Ding, Z. and Deng, W.M. (2017), "Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory", Compos. Struct., 165, 250-265. https://doi.org/10.1016/j.compstruct.2017.01.032.
  24. Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
  25. Nejad, M.Z. and Hadi, A. (2016), "Eringen's non-local elasticity theory for bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 106, 1-9. https://doi.org/10.1016/j.ijengsci.2016.05.005.
  26. Rahaeifard, M., Kahrobaiyan, M.H., and Ahmadian, M.T. (2009), "Sensitivity analysis of atomic force microscope cantilever made of functionally graded materials", ASME International Design Engineering Technical Conferences/Computers and Information in Engineering Conference, San Diego, CA, U.S.A., August.
  27. Rahmani, O., Refaeinejad, V. and Hosseini, S.A.H. (2017), "Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams", Steel Compos. Struct., 23(3), 339-350. https://doi.org/10.12989/scs.2017.23.3.339.
  28. Rajasekaran, S. and Khaniki, H.B. (2019), "Finite element static and dynamic analysis of axially functionally graded nonuniform small-scale beams based on nonlocal strain gradient theory", Mech. Adv. Mater. Struct., 26(14), 1245-1259. https://doi.org/10.1080/15376494.2018.1432797.
  29. Romano, G., Barretta, R., Diaco, M. and de Sciarra, F.M. (2017), "Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams", Int. J. Mech. Sci., 121, 151-156. https://doi.org/10.1016/j.ijmecsci.2016.10.036.
  30. Sahmani, S. and Safaei, B. (2020), "Influence of homogenization models on size-dependent nonlinear bending and postbuckling of bi-directional functionally graded micro/nano-beams", Appl. Math. Modell., 82, 336-358. https://doi.org/10.1016/j.apm.2020.01.051.
  31. Shabana, Y.M., Samy, M.A., Abdel-Aziz, M.A., Hindawi, M.E., Mosry, M.G., Albarawy, A.R.M., Omar, M.M., Mohamed, A.A. and Attia, A.A. (2021), "Enhancing the performance of microbiosensors by functionally graded geometrical and material parameters", Arch. Appl. Mech., 91(6), 2497-2511. https://doi.org/10.1007/s00419-021-01900-w.
  32. Simsek, M. (2019), "Some closed-form solutions for static, buckling, free and forced vibration of functionally graded (FG) nanobeams using nonlocal strain gradient theory", Compos. Struct., 224. https://doi.org/10.1016/j.compstruct.2019.111041.
  33. Simsek, M. and Yurtcu, H.H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038.
  34. Vaccaro, M.S., de Sciarra, F.M. and Barretta, R. (2021), "On the regularity of curvature fields in stress-driven nonlocal elastic beams", Acta Mechanica, 232(7), 2595-2603. https://doi.org/10.1007/s00707-021-02967-w.
  35. Wang, Y.B., Zhu, X.W. and Dai, H.H. (2016), "Exact solutions for the static bending of Euler-Bernoulli beams using Eringen's two-phase local/nonlocal model", Aip Adv., 6(8), 085114. https://doi.org/10.1063/1.4961695.
  36. Wu, T.Y. and Liu, G.R. (2001), "The generalized differential quadrature rule for fourth-order differential Eqs.", Int. J. Numer. Meth. Eng., 50(8), 1907-1929. https://doi.org/10.1002/nme.102.
  37. Yang, T.Z., Tang, Y., Li, Q. and Yang, X.D. (2018), "Nonlinear bending, buckling and vibration of bi-directional functionally graded nanobeams", Compos. Struct., 204, 313-319. https://doi.org/10.1016/j.compstruct.2018.07.045.
  38. Zhang, J.Q., Qing, H. and Gao, C.F. (2020a), "Exact and asymptotic bending analysis of microbeams under different boundary conditions using stress-derived nonlocal integral model", Zamm-Zeitschrift Fur Angewandte Mathematik Und Mechanik, 100(1). https://doi.org/10.1002/zamm.201900148.
  39. Zhang, J. and Fu, Y.M. (2012), "Pull-in analysis of electrically actuated viscoelastic microbeams based on a modified couple stress theory", Meccanica, 47(7), 1649-1658. https://doi.org/10.1007/s11012-012-9545-2.
  40. Zhang, P. and Qing, H. (2020), "Exact solutions for size-dependent bending of Timoshenko curved beams based on a modified nonlocal strain gradient model", Acta Mechanica, 231(12), 5251-5276. https://doi.org/10.1007/s00707-020-02815-3.
  41. Zhang, P. and Qing, H. (2021), "The consistency of the nonlocal strain gradient integral model in size-dependent bending analysis of beam structures", Int. J. Mech. Sci., 189. https://doi.org/10.1016/j.ijmecsci.2020.105991.
  42. Zhang, P., Qing, H. and Gao, C. (2019), "Theoretical analysis for static bending of circular Euler-Bernoulli beam using local and Eringen's nonlocal integral mixed model", Zamm-Zeitschrift Fur Angewandte Mathematik Und Mechanik, 99(8), e201800329. https://doi.org/10.1002/zamm.201800329.
  43. Zhang, P., Qing, H. and Gao, C.F. (2020b), "Analytical solutions of static bending of curved Timoshenko microbeams using Eringen's two-phase local/nonlocal integral model", ZammZeitschrift Fur Angewandte Mathematik Und Mechanik, 100(7). https://doi.org/10.1002/zamm.201900207.