DOI QR코드

DOI QR Code

Analytical nonlocal elasticity solution and ANN approximate for free vibration response of layered carbon nanotube reinforced composite beams

  • Emrah Madenci (Department of Civil Engineering, Necmettin Erbakan University) ;
  • Saban Gulcu (Department of Computer Engineering, Necmettin Erbakan University) ;
  • Kada Draiche (Department of Civil Engineering, University of Tiaret)
  • 투고 : 2022.01.20
  • 심사 : 2023.09.21
  • 발행 : 2024.03.25

초록

This article investigates the free vibration behavior of carbon nanotube reinforced composite (CNTRC) beams embedded using variational analytical methods and artificial neural networks (ANN). The material properties of layered functionally graded CNTRC (FG-CNTRC) beams are estimated using nonlocal parameters modified power-law with different types of CNT distributions through the thickness direction of the beam. Adopting Eringen's nonlocal elasticity theory to capture the small size effects, the nonlocal governing equations are derived and solved using the analytical method. And also, the problem was analyzed using the ANN method. The architecture of the proposed ANN model is 3-9-1. In the experiments, we used 112 different data to predict the natural frequency using ANN. Based on the nonlocal differential constitutive relations of Eringen, the equations of motion as well as the boundary conditions of the beam are derived using Hamilton's principle. The classical beam theory is used to formulate a governing equation for predicting the free vibration of laminated CNTRC beams. According to the experimental results, the prediction ability of the ANN model is very good and the natural frequency can be predicted in ANN without attempting any experiments.

키워드

참고문헌

  1. Alajarmeh, O., X. Zeng, T. Aravinthan, T. Shelley, M. Alhawamdeh, A. Mohammed, L. Nicol, A. Vedernikov, A. Safonov and P. Schubel (2021), "Compressive behaviour of hollow box pultruded FRP columns with continuous-wound fibres", Thin Wall. Struct., 168, 108300. https://doi.org/10.1016/j.tws.2021.108300.
  2. Aljarah, I., Faris, H. and Mirjalili, S. (2018), "Optimizing connection weights in neural networks using the whale optimization algorithm", Soft Comput., 22(1), 1-15. https://doi.org/10.1007/s00500-016-2442-1.
  3. Asghar, S., Naeem, M.N., Hussain, M., Taj, M. and Tounsi, A. (2020), "Prediction and assessment of nonlocal natural frequencies of DWCNTs, Vibration analysis", Comput. Concr., 25(2), 133-144. https://doi.org/10.12989/cac.2020.25.2.133.
  4. Asghar, S., Naeem, M.N., Khadimallah, M.A., Hussain, M., Iqbal, Z. and Tounsi, A. (2020), "Effect of chiral structure for free vibration of DWCNTs, Modal analysis", Adv. Concr. Constr., 9(6), 577-588. https://doi.org/10.12989/acc.2020.9.6.577.
  5. Aydogdu, M. (2012), "Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity", Mech. Res. Commun., 43, 34-40. https://doi.org/10.1016/j.mechrescom.2012.02.001.
  6. Babaei, H., Y. Kiani and M.R. Eslami (2021), "Vibrational behavior of thermally pre-/post-buckled FG-CNTRC beams on a nonlinear elastic foundation, a two-step perturbation technique", Acta Mech., 232, 3897-3915. https://doi.org/10.1007/s00707-021-03027-z.
  7. Bachman, L.F. (2004), Statistical analyses for language assessment book, Cambridge University Press.
  8. Bebis, G. and Georgiopoulos, M. (1994), "Feed-forward neural networks", IEEE Potentials, 13(4), 27-31. https://doi.org/10.1109/45.329294.
  9. Bensaid, I. and Guenanou, A. (2017), "Bending and stability analysis of size-dependent compositionally graded Timoshenko nanobeams with porosities", Adv. Mater. Res., 6(1), 45. https://doi.org/10.12989/amr.2017.6.1.045.
  10. Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. and Tounsi, A. (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., 6(2), 147. https://doi.org/10.12989/anr.2018.6.2.147.
  11. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227.
  12. Bourada, F., Bousahla, A.A., Tounsi, A., Bedia, E., Mahmoud, S., Benrahou, K.H. and Tounsi, A. (2020), "Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation", Comput. Concr., 25(6), 485-495. https://doi.org/10.12989/cac.2020.25.6.485.
  13. Bre, F., Gimenez, J.M. and Fachinotti, V.D. (2018), "Prediction of wind pressure coefficients on building surfaces using artificial neural networks", Energy Build., 158, 1429-1441. https://doi.org/10.1016/j.enbuild.2017.11.045.
  14. Chavan, S.G. and Lal, A. (2018), "Geometrical nonlinear bending characteristics of SWCNTRC doubly curved shell panels", Adv. Aircr. Spacecr. Sci., 5(1), 21. https://doi.org/10.12989/aas.2018.5.1.021.
  15. Dorffner, G. (1996), "Neural networks for time series processing", Neural Network World, 6, 447-468.
  16. Duc, N.D., Seung-Eock, K., Quan, T.Q., Long, D.D. and Anh, V.M. (2018), "Nonlinear dynamic response and vibration of nanocomposite multilayer organic solar cell", Compos. Struct., 184, 1137-1144. https://doi.org/10.1016/j.compstruct.2017.10.064.
  17. Eberhardt, O. and Wallmersperger, T. (2015), "Energy consistent modified molecular structural mechanics model for the determination of the elastic properties of single wall carbon nanotubes", Carbon, 95, 166-180. https://doi.org/10.1016/j.carbon.2015.07.092.
  18. Ebrahimi, F. and Barati, M.R. (2016), "An exact solution for buckling analysis of embedded piezo-electro-magnetically actuated nanoscale beams", Adv. Nano Res., 4(2), 65. https://doi.org/10.12989/anr.2016.4.2.065.
  19. Ebrahimi, F. and Barati, M.R. (2018), "Stability analysis of functionally graded heterogeneous piezoelectric nanobeams based on nonlocal elasticity theory", Adv. Nano Res., 6(2), 93. https://doi.org/10.12989/anr.2018.6.2.093.
  20. Ebrahimi, F. and Farazmandnia, N. (2018), "Vibration analysis of functionally graded carbon nanotube-reinforced composite sandwich beams in thermal environment", Adv. Aircr. Spacecr. Sci., 5(1), 107. https://doi.org/10.12989/aas.2018.5.1.107.
  21. Ehyaei, J. and M. Daman (2017), "Free vibration analysis of double walled carbon nanotubes embedded in an elastic medium with initial imperfection", Adv. Nano Res., 5(2), 179. https://doi.org/10.12989/anr.2017.5.2.179
  22. Eldem, A. (2020), "An application of deep neural network for classification of wheat seeds", Eur. J. Sci. Technol., 19, 213-220. https://doi.org/10.31590/ejosat.719048.
  23. Eltaher, M., Khater, M., Park, S., Abdel-Rahman, E. and Yavuz, M. (2016), "On the static stability of nonlocal nanobeams using higher-order beam theories", Adv. Nano Res., 4(1), 51-64. https://doi.org/10.12989/anr.2016.4.1.051.
  24. Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39-49. https://doi.org/10.12989/anr.2019.7.1.039.
  25. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
  26. Farazin, A. and Mohammadimehr, M. (2021), "Computer modeling to forecast accurate of efficiency parameters of different size of graphene platelet, carbon, and boron nitride nanotubes, A molecular dynamics simulation", Comput. Concr., 27(2), 111-130. https://doi.org/10.12989/cac.2021.27.2.111.
  27. Frimpong, E.A., Oluwasanmi, A., Baagyere, E.Y. and Zhiguang, Q. (2021), "A feedforward artificial neural network model for classification and detection of type 2 diabetes", J. Phys., 1734(1), 012026. https://doi.org/10.1088/1742-6596/1734/1/012026.
  28. Ghadyani, G., Soufeiani, L. and O chsner, A. (2016), "On the characterization of the elastic properties of asymmetric single-walled carbon nanotubes", J. Phys. Chem. Solid., 89, 62-68. https://doi.org/10.1016/j.jpcs.2015.10.013.
  29. Gulcu, S. (2020), "Training of the artificial neural networks using states of matter search algorithm", Int. J. Intell. Syst. Appl. Eng., 8(3), 131-136. https://doi.org/10.18201/ijisae.2020363532.
  30. Gulcu, S. (2021), "An improved animal migration optimization algorithm to train the feed-forward artificial neural networks", Arab. J. Sci. Eng., 1-25. https://doi.org/10.1007/s13369-021-06286-z.
  31. Hacibeyoglu, M. and Ibrahim, M.H. (2018), "Human gender prediction on facial mobil images using convolutional neural networks", Int. J. Intell. Syst. Appl. Eng., 6(3), 203-208. https://doi.org/10.18201/ijisae.2018644778.
  32. Hakim, S. and Razak, H.A. (2013), "Structural damage detection of steel bridge girder using artificial neural networks and finite element models", Steel Compos. Struct., 14(4), 367-377. https://doi.org/10.12989/scs.2013.14.4.367.
  33. Hosseini, S., Moghaddam, M. and Rahmani, O. (2020), "Exact solution for axial vibration of the power, exponential and sigmoid FG nonlocal nanobeam", Adv. Aircr. Spacecr. Sci., 7(6), 517-536. https://doi.org/10.12989/aas.2020.7.6.517.
  34. Hosseini, S.A. and Khosravi, F. (2020), "Exact solution for dynamic response of size dependent torsional vibration of CNT subjected to linear and harmonic loadings", Adv. Nano Res., 8(1), 25-36. https://doi.org/10.12989/anr.2020.8.1.025.
  35. Hussain, M., Naeem, M.N., Asghar, S. and Tounsi, A. (2020a), "Theoretical impact of Kelvin's theory for vibration of double walled carbon nanotubes", Adv. Nano Res., 8(4), 307-322. https://doi.org/10.12989/anr.2020.8.4.307.
  36. Hussain, M., Naeem, M.N. and Tounsi, A. (2020b), "Numerical Study for nonlocal vibration of orthotropic SWCNTs based on Kelvin's model", Adv. Concr. Constr., 9(3), 301-312. https://doi.org/10.12989/acc.2020.9.3.301.
  37. Hussain, M., Naeem, M.N. and Tounsi, A. (2020c), "Response of orthotropic Kelvin modeling for single-walled carbon nanotubes, Frequency analysis", Adv. Nano Res., 8(3), 229-244. https://doi.org/10.12989/anr.2020.8.3.229.
  38. Jam, J.E. and Y. Kiani (2015), "Low velocity impact response of functionally graded carbon nanotube reinforced composite beams in thermal environment", Compos. Struct., 132, 35-43. https://doi.org/10.1016/j.compstruct.2015.04.045.
  39. James, G., Witten, D., Hastie, T. and Tibshirani, R. (2013), An introduction to statistical learning, Springer.
  40. Kannan, S., Kim, B., Gupta, A., Noh, S.H. and Li, L. (2012), "Characterization of high performance CNT-based TSV for high-frequency RF applications", Adv. Mater. Res., 1(1), 37. https://doi.org/10.12989/amr.2012.1.1.037.
  41. Karami, B., Janghorban, M. and Tounsi, A. (2018), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201.
  42. Karasahin, A.T. and Tumer, A.E. "Real time traffic signal timing approach based on artificial neural network", MANAS J. Eng., 8(1), 49-54.
  43. Khaniki, H.B. and M.H. Ghayesh (2020), "A review on the mechanics of carbon nanotube strengthened deformable structures", Eng. Struct., 220, 110711. https://doi.org/10.1016/j.engstruct.2020.110711
  44. Khater, H. and Abd el Gawaad, H. (2016), "Characterization of alkali activated geopolymer mortar doped with MWCNT", Constr. Build. Mater., 102, 329-337. https://doi.org/10.1016/j.conbuildmat.2015.10.121.
  45. Kheroubi, B., Benzair, A., Tounsi, A. and Semmah, A. (2016), "A new refined nonlocal beam theory accounting for effect of thickness stretching in nanoscale beams", Adv. Nano Res., 4(4), 251. https://doi.org/10.12989/anr.2016.4.4.251.
  46. Khosravi, F. and Hosseini, S.A. (2020), "On the viscoelastic carbon nanotube mass nanosensor using torsional forced vibration and Eringen's nonlocal model", Mech. Based Des. Struct., 1-24. https://doi.org/10.1080/15397734.2020.1744001.
  47. Khosravi, S., H. Arvin and Y. Kiani (2019a), "Interactive thermal and inertial buckling of rotating temperature-dependent FGCNT reinforced composite beams", Compos. Part B Eng., 175, 107178. https://doi.org/10.1016/j.compositesb.2019.107178
  48. Khosravi, S., H. Arvin and Y. Kiani (2019b), "Vibration analysis of rotating composite beams reinforced with carbon nanotubes in thermal environment", Int. J. Mech. Sci., 164, 105187. https://doi.org/10.1016/j.ijmecsci.2019.105187
  49. Kiani, Y. (2016), "Thermal postbuckling of temperature-dependent sandwich beams with carbon nanotube-reinforced face sheets", J. Therm. Stress., 39(9), 1098-1110. https://doi.org/10.1080/01495739.2016.1192856.
  50. Kohonen, T. (1982), "Self-organized formation of topologically correct feature maps", Biol. Cybernet., 43(1), 59-69. https://doi.org/10.1007/BF00337288.
  51. Korotkov, R., A. Vedernikov, S. Gusev, O. Alajarmeh, I. Akhatov and A. Safonov (2021), "Shape memory behavior of unidirectional pultruded laminate", Compos. Part A Appl. Sci., 150, 106609. https://doi.org/10.1016/j.compositesa.2021.106609.
  52. Kumar, B.R. (2018), "Investigation on mechanical vibration of double-walled carbon nanotubes with inter-tube Van der waals forces", Adv. Nano Res., 6(2), 135. https://doi.org/10.12989/anr.2018.6.2.135.
  53. Madenci, E. (2021), "Free vibration analysis of carbon nanotube RC nanobeams with variational approaches", Adv. Nano Res., 11(2), 157-171. https://doi.org/10.12989/anr.2021.11.2.157.
  54. Madenci, E. (2023), "Fonksiyonel Derecelendirilmis Malzeme Plaklarin Statik Analizinde Mikro-Mekanik Modellerin Katkisi", Necmettin Erbakan u niversitesi Fen ve Muhendislik Bilimleri Dergisi, 5(1), 23-37. https://doi.org/10.47112/neufmbd.2023.7.
  55. Madenci, E. and Gulcu, S. (2020), "Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM", Struct. Eng. Mech., 75(5), 633-642. https://doi.org/10.12989/sem.2020.75.5.633.
  56. Madenci, E., Ozkilic, Y.O., Hakamy, A. and Tounsi, A. (2023), "Experimental tensile test and micro-mechanic investigation on carbon nanotube reinforced carbon fiber composite beams", Adv. Nano Res., 14(5), 443-450. https://doi.org/10.12989/anr.2023.14.5.443
  57. Mehar, K., Panda, S.K., Dehengia, A. and Kar, V.R. (2016), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandw. Struct. Mater., 18(2), 151-173. https://doi.org/10.1177/1099636215613324.
  58. Mirjalili, S. (2015), "How effective is the Grey Wolf optimizer in training multi-layer perceptrons", Appl. Intell., 43(1), 150-161. https://doi.org/10.1007/s10489-014-0645-7.
  59. Mirzaei, M. and Y. Kiani (2015), "Snap-through phenomenon in a thermally postbuckled temperature dependent sandwich beam with FG-CNTRC face sheets", Compos. Struct., 134, 1004-1013. https://doi.org/10.1016/j.compstruct.2015.09.003.
  60. Mirzaei, M. and Y. Kiani (2016), "Nonlinear free vibration of temperature-dependent sandwich beams with carbon nanotube-reinforced face sheets", Acta Mech., 227(7), 1869-1884. https://doi.org/10.1007/s00707-016-1593-6.
  61. Mokhtar, Y., Heireche, H., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S. (2018), "A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory", Smart Struct. Syst., 21(4), 397-405. https://doi.org/10.12989/sss.2018.21.4.397.
  62. Mouffoki, A., Bedia, E.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., 20(3), 369-383. https://doi.org/10.12989/sss.2017.20.3.369.
  63. Park, J. and Sandberg, I.W. (1993), "Approximation and radial-basis-function networks", Neural Comput., 5(2), 305-316. https://doi.org/10.1162/neco.1993.5.2.305.
  64. Qin, B., Zhong, R., Wang, T., Wang, Q., Xu, Y. and Hu, Z. (2020), "A unified Fourier series solution for vibration analysis of FGCNTRC cylindrical, conical shells and annular plates with arbitrary boundary conditions", Compos. Struct., 232, 111549. https://doi.org/10.1016/j.compstruct.2019.111549.
  65. Shekari, A., Ghasemi, F.A. and Malekzadehfard, K. (2017), "Free damped vibration of rotating truncated conical sandwich shells using an improved high-order theory", Latin Am. J. Solids Struct., 14(12), 2291-2323. https://doi.org/10.1590/1679-78253977.
  66. Shen, H.S., Li, C. and Reddy, J.N. (2020), "Large amplitude vibration of FG-CNTRC laminated cylindrical shells with negative Poisson's ratio", Comput. Methods Appl. Mech. Eng., 360, 112727. https://doi.org/10.1016/j.cma.2019.112727.
  67. Simsek, M. and Yurtcu, H.H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038.
  68. Thai, H.T. and Vo, T.P. (2012), "A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 54, 58-66. https://doi.org/10.1016/j.ijengsci.2012.01.009.
  69. Tounsi, A., Houari, M.S.A. and Benyoucef, S. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009.
  70. Tumer, A., Edebali, S. and Gulcu, S. (2020), "Modeling of Removal of Chromium (VI) from Aqueous Solutions Using Artificial Neural Network", Iran. J. Chem. Chem. Eng., 39(1), 163-175. https://doi.org/10.30492/ijcce.2020.33257.
  71. Uyaner, M. and A. Yar (2019), "Nano Elyaf Takviyeli Nanokompozit u retimi ve Karakterizasyonu", Necmettin Erbakan u niversitesi Fen ve Muhendislik Bilimleri Dergisi, 1(1), 10-19.
  72. Vedernikov A, Safonov A, Tucci F, Carlone P, Akhatov I. (2020), "Pultruded materials and structures: A review", J. Compos. Mater., 54(26), 4081-4117. https://doi.org/10.1177/0021998320922894
  73. Wang, Y.Z., H.T. Cui, F.M. Li and K. Kishimoto (2011), "Effects of viscous fluid on wave propagation in carbon nanotubes", Phys. Lett. A, 375(24), 2448-2451. https://doi.org/10.1016/j.physleta.2011.05.016
  74. Wang, Y.Z., F.M. Li and K. Kishimoto (2010), "Wave propagation characteristics in fluid-conveying double-walled nanotubes with scale effects", Comput. Mater. Sci., 48(2), 413-418. https://doi.org/10.1016/j.commatsci.2010.01.034
  75. Wang, Y.Z. and F.M. Li (2014), "Nonlinear free vibration of nanotube with small scale effects embedded in viscous matrix", Mech. Res. Commun., 60, 45-51. https://doi.org/10.1016/j.mechrescom.2014.06.002
  76. Wang, Y.Z., F.M. Li and K. Kishimoto (2012), "Effects of axial load and elastic matrix on flexural wave propagation in nanotube with nonlocal Timoshenko beam model", J. Vib. Acoust., 134(3), 031011. https://doi.org/10.1115/1.4005832
  77. Wu, H., Kitipornchai, S. and Yang, J. (2015), "Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets", Int. J. Struct. Stabil. Dyn., 15(7), 1540011. https://doi.org/10.1142/S0219455415400118.
  78. Yadav, A.K., Malik, H. and Mittal, A. (2015), "Artificial neural network fitting tool based prediction of solar radiation for identifying solar power potential", J. Electr. Eng., 15(2), 25-29.
  79. Youcef, D.O., Kaci, A., Benzair, A., Bousahla, A.A. and Tounsi, A. (2018), "Dynamic analysis of nanoscale beams including surface stress effects", Smart Struct. Syst., 21(1), 65-74. https://doi.org/10.12989/sss.2018.21.1.065.