DOI QR코드

DOI QR Code

The efficient data-driven solution to nonlinear continuum thermo-mechanics behavior of structural concrete panel reinforced by nanocomposites: Development of building construction in engineering

  • Hengbin Zheng (College of Water Conservancy and Civil Engineering, South China Agricultural University) ;
  • Wenjun Dai (Shenzhen Urban Transport Planning Center Co., Ltd) ;
  • Zeyu Wang (School of Engineering and Technology, China University of Geosciences) ;
  • Adham E. Ragab (Industrial Engineering Department, College of Engineering, King Saud University)
  • 투고 : 2023.03.29
  • 심사 : 2023.11.16
  • 발행 : 2024.03.25

초록

When the amplitude of the vibrations is equivalent to that clearance, the vibrations for small amplitudes will really be significantly nonlinear. Nonlinearities will not be significant for amplitudes that are rather modest. Finally, nonlinearities will become crucial once again for big amplitudes. Therefore, the concrete panel system may experience a big amplitude in this work as a result of the high temperature. Based on the 3D modeling of the shell theory, the current work shows the influences of the von Kármán strain-displacement kinematic nonlinearity on the constitutive laws of the structure. The system's governing Equations in the nonlinear form are solved using Kronecker and Hadamard products, the discretization of Equations on the space domain, and Duffing-type Equations. Thermo-elasticity Equations. are used to represent the system's temperature. The harmonic solution technique for the displacement domain and the multiple-scale approach for the time domain are both covered in the section on solution procedures for solving nonlinear Equations. An effective data-driven solution is often utilized to predict how different systems would behave. The number of hidden layers and the learning rate are two hyperparameters for the network that are often chosen manually when required. Additionally, the data-driven method is offered for addressing the nonlinear vibration issue in order to reduce the computing cost of the current study. The conclusions of the present study may be validated by contrasting them with those of data-driven solutions and other published articles. The findings show that certain physical and geometrical characteristics have a significant effect on the existing concrete panel structure's susceptibility to temperature change and GPL weight fraction. For building construction industries, several useful recommendations for improving the thermo-mechanics' behavior of structural concrete panels are presented.

키워드

과제정보

The authors extend their appreciation to King Saud University for funding this work through Researchers Supporting Project number (RSPD2024R711), King Saud University, Riyadh, Saudi Arabia.

참고문헌

  1. Alazwari, M.A., Daikh, A.A. and Eltaher, M.A. (2022a), "Novel quasi 3D theory for mechanical responses of FG-CNTs reinforced composite nanoplates", Adv. Nano Res., 12(2), 117. https://doi.org/10.12989/anr.2022.12.2.117.
  2. Alazwari, M.A., Esen, I., Abdelrahman, A.A., Abdraboh, A.M. and Eltaher, M.A. (2022b), "Dynamic analysis of functionally graded (FG) nonlocal strain gradient nanobeams under thermomagnetic fields and moving load", Adv. Nano Res., 12(3), 231-251. https://doi.org/10.12989/anr.2022.12.3.231.
  3. Amelirad, O. and Assempour, A. (2019), "Experimental and crystal plasticity evaluation of grain size effect on formability of austenitic stainless steel sheets", J. Manuf. Proc., 47, 310-323. https://doi.org/10.1016/j.jmapro.2019.09.035
  4. Babaei, M., Atasoy, A., Hajirasouliha, I., Mollaei, S. and Jalilkhani, M. (2022), "Numerical solution of beam Eq. using neural networks and evolutionary optimization tools", Adv. Comput. Des., 7(1), 1-17. https://doi.org/10.12989/acd.2022.7.1.001
  5. Bidzard, A., Malekzadeh, P. and Mohebpour, S.R. (2022), "A size-dependent nonlinear finite element free vibration analysis of multilayer FG-GPLRC toroidal micropanels in thermal environment", Compos. Struct., 279, 114783. https://doi.org/10.1016/j.compstruct.2021.114783
  6. Chen, L., Chen, Z., Xie, Z., Wei, L., Hua, J., Huang, L. and Yap, P.S. (2023), "Recent developments on natural fiber concrete: A review of properties, sustainability, applications, barriers, and opportunities", Develop. Built Environ., 16, 100255. https://doi.org/10.1016/j.dibe.2023.100255
  7. Chen, L., Yang, H., Song, K., Huang, W., Ren, X. and Xu, H. (2021), "Failure mechanisms and characteristics of the Zhongbao landslide at Liujing Village, Wulong, China", Landslides, 18(4), 1445-1457. https://doi.org/10.1007/s10346-020-01594-1
  8. Cui, C., Nie, T., Zhou, B., Cai, Y., Wang, G., Bai, J., Wang, H. and Ma, S. (2021), "Preparation and investigation of graphene-coated lead-free glass frit based on amino dispersant for improved adhesion and lower temperature point", Diamond Relat. Mater., 11, 108213, https://doi.org/10.1016/j.diamond.2020.108213.
  9. Dai, Z., Xie, J. and Jiang, M. (2023), "A coupled peridynamics-smoothed particle hydrodynamics model for fracture analysis of fluid-structure interactions", Ocean Eng., 279, 114582. https://doi.org/10.1016/j.oceaneng.2023.114582
  10. Fan, L., Sahmani, S. and Safaei, B. (2021), "Couple stress-based dynamic stability analysis of functionally graded composite truncated conical microshells with magnetostrictive facesheets embedded within nonlinear viscoelastic foundations", Eng. Comput., 37, 1635-1655. https://doi.org/10.1007/s00366-020-01182-w
  11. Fazzolari, F.A. and Carrera, E. (2013), "Free vibration analysis of sandwich plates with anisotropic face sheets in thermal environment by using the hierarchical trigonometric Ritz formulation", Compos. Part B Eng., 50, 67-81. https://doi.org/10.1016/j.compositesb.2013.01.020
  12. Fei, Y., Fang, S. and Hu, Y.H. (2020), "Synthesis, properties and potential applications of hydrogenated graphene", Chem. Eng. J., 397, 125408, https://doi.org/10.1016/j.cej.2020.125408.
  13. Feng, J., Safaei, B., Qin, Z. and Chu, F. (2023), "Nature-inspired energy dissipation sandwich composites reinforced with high-friction graphene", Compos. Sci. Technol., 233, 109925. https://doi.org/10.1016/j.compscitech.2023.109925
  14. Feng, Y., Mohammadi, M., Wang, L., Rashidi, M. and Mehrabi, P. (2021), "Application of artificial intelligence to evaluate the fresh properties of self-consolidating concrete", Materials, 14(17), 4885. https://doi.org/10.3390/ma14174885
  15. Firouzianhaji, A., Usefi, N., Samali, B. and Mehrabi, P. (2021), "Shake table testing of standard cold-formed steel storage rack", Appl. Sci., 11(4), 1821. https://doi.org/10.3390/app11041821
  16. Frostig, Y. and Thomsen, O.T. (2009), "On the free vibration of sandwich panels with a transversely flexible and temperature-dependent core material-Part I: Mathematical formulation", Compos. Sci. Technol., 69(6), 856-862. https://doi.org/10.1016/j.compscitech.2008.03.003.
  17. Gaj, J., Clapa, M., Nowak, D., Juszczak, J., Galazka, M., Pelka, M. and Niedzielski, P. (2020), "Metallurgical graphene under different gas atmospheres and UV radiation for gas-sensing applications", Sensors Actuat. A Phys., 312, 112152. https://doi.org/10.1016/j.sna.2020.112152.
  18. Guo, J., Baharvand, A., Tazeddinova, D., Habibi, M., Safarpour, H., Roco-Videla, A. and Selmi, A. (2022), "An intelligent computer method for vibration responses of the spinning multilayer symmetric nanosystem using multi-physics modeling", Eng. Comput., 38(Suppl5), 4217-4238. https://doi.org/10.1007/s00366-021-01433-4
  19. Guo, X., Liu, Y. and Wang, G. (2021), "Computer modeling for frequency performance of viscoelastic magneto-electro-elastic annular micro/nanosystem via adaptive tuned deep learning neural network optimization", Advances in nano research. 11(2), 203, https://doi.org/10.12989/anr.2021.11.2.203
  20. Han, S., Zheng, D., Mehdizadeh, B., Nasr, E.A., Khandaker, M.U., Salman, M. and Mehrabi, P. (2023a), "Sustainable design of self-consolidating green concrete with partial replacements for cement through neural-network and fuzzy technique", Sustainability, 15(6), 4752. https://doi.org/10.3390/su15064752
  21. Han, S., Zhu, Z., Mortazavi, M., El-Sherbeeny, A.M. and Mehrabi, P. (2023b), "Analytical assessment of the structural behavior of a specific composite floor system at elevated temperatures using a newly developed hybrid intelligence method", Buildings, 13(3), 799. https://doi.org/10.3390/buildings13030799
  22. Han, Y., Shao, S., Fang, B., Shi, T., Zhang, B., Wang, X. and Zhao, X. (2023c), "Chloride ion penetration resistance of matrix and interfacial transition zone of multi-walled carbon nanotube-reinforced concrete", J. Build. Eng., 72, 106587. https://doi.org/10.1016/j.jobe.2023.106587
  23. Hao, R.B., Lu, Z.Q., Ding, H. and Chen, L.Q. (2022), "A nonlinear vibration isolator supported on a flexible plate: analysis and experiment", Nonlinear Dyn., 108(2), 941-958. https://doi.org/10.1007/s11071-022-07243-7.
  24. HB, K. (1977), "Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problem", Appl. Bifurcat. Theor.
  25. He, H., Wang, S., Shen, W. and Zhang, W. (2023), "The influence of pipe-jacking tunneling on deformation of existing tunnels in soft soils and the effectiveness of protection measures", Transport. Geotech., 42 101061. https://doi.org/10.1016/j.trgeo.2023.101061.
  26. Houari, M.S.A., Tounsi, A. and Beg, O.A. (2013), "Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory", Int. J. Mech. Sci., 76, 102-111. https://doi.org/10.1016/j.ijmecsci.2013.09.004
  27. Hu, D., Sun, H., Mehrabi, P., Ali, Y.A. and Al-Razgan, M. (2023), "Application of artificial intelligence technique in optimization and prediction of the stability of the walls against wind loads in building design", Mech. Adv. Mater. Struct., 1-18. https://doi.org/10.1080/15376494.2023.2206208
  28. Huang, H., Yuan, Y., Zhang, W. and Zhu, L. (2021), "Property assessment of high-performance concrete containing three types of fibers", Int. J. Concr. Struct. Mater., 15(1), 1-17. https://doi.org/10.1186/s40069-021-00476-7
  29. Inada, A.A., Arman, S. and Safaei, B. (2022), "A novel review on the efficiency of nanomaterials for solar energy storage systems", J. Energy Storage, 55, 105661. https://doi.org/10.1016/j.est.2022.105661
  30. Khalili, S.M.R. and Mohammadi, Y. (2012), "Free vibration analysis of sandwich plates with functionally graded face sheets and temperature-dependent material properties: A new approach", Eur. J. Mech. A Solids, 35, 61-74. https://doi.org/10.1016/j.euromechsol.2012.01.003.
  31. Kuang, W., Wang, H., Li, X., Zhang, J., Zhou, Q. and Zhao, Y. (2018), "Application of the thermodynamic extremal principle to diffusion-controlled phase transformations in Fe-CX alloys: Modeling and applications", Acta Materialia. 159 16-30. https://doi.org/10.1016/j.actamat.2018.08.008
  32. Kulikov, G.M. and Plotnikova, S.V. (2015), "Three-dimensional thermal stress analysis of laminated composite plates with general layups by a sampling surfaces method", Eur. J. Mech. A Solids, 49, 214-226. https://doi.org/10.1016/j.euromechsol.2014.07.011
  33. Li, X., Zhu, H. and Yuan, Q. (2023), "Dilatancy Eq. based on the property-dependent plastic potential theory for geomaterials", Fractal Fraction., 7(11), 824. https://doi.org/10.3390/fractalfract7110824
  34. Li, Z.M., Liu, T. and Qiao, P. (2021), "Nonlinear vibration and dynamic instability analyses of laminated doubly curved panels in thermal environments", Compos. Struct., 267, 113434. https://doi.org/10.1016/j.compstruct.2020.113434
  35. Lin, J.X., Chen, G., Pan, H.S., Wang, Y.C., Guo, Y.C. and Jiang, Z.X. (2023), "Analysis of stress-strain behavior in engineered geopolymer composites reinforced with hybrid PE-PP fibers: A focus on cracking characteristics", Compos. Struct., 323, 117437. https://doi.org/10.1016/j.compstruct.2023.117437
  36. Liu, B., Yang, H. and Karekal, S. (2020), "Effect of water content on argillization of mudstone during the tunnelling process", Rock Mech. Rock Eng., 53, 799-813. https://doi.org/10.1007/s00603-019-01947-w
  37. Liu, C., Cui, J., Zhang, Z., Liu, H., Huang, X. and Zhang, C. (2021), "The role of TBM asymmetric tail-grouting on surface settlement in coarse-grained soils of urban area: Field tests and FEA modelling", Tunnell. Undergr. Space Technol., 111, 103857. https://doi.org/10.1016/j.tust.2021.103857
  38. Liu, J., Mohammadi, M., Zhan, Y., Zheng, P., Rashidi, M. and Mehrabi, P. (2021), "Utilizing artificial intelligence to predict the superplasticizer demand of self-consolidating concrete incorporating pumice, slag, and fly ash powders", Materials, 14(22), 6792. https://doi.org/10.3390/ma14226792
  39. Liu, L., Lv, B. and He, T. (2015), "The stochastic dynamic snap-through response of thermally buckled composite panels", Compos. Struct., 131, 344-355. https://doi.org/10.1016/j.compstruct.2015.05.032
  40. Lu, Z.Q., Gu, D.H., Ding, H., Lacarbonara, W. and Chen, L.Q. (2020), "Nonlinear vibration isolation via a circular ring", Mech. Syst. Signal Pr., 136, 106490. https://doi.org/10.1016/j.ymssp.2019.106490
  41. Lu, Z., Yang, T., Brennan, M.J., Liu, Z. and Chen, L.-Q. (2017), "Experimental investigation of a two-stage nonlinear vibration isolation system with high-static-low-dynamic stiffness", J. Appl. Mech., 84(2), 021001. https://doi.org/10.1115/1.4034989
  42. Ma, L.S. and Lee, D.W. (2012), "Exact solutions for nonlinear static responses of a shear deformable FGM beam under an in-plane thermal loading", Eur. J. Mech. A Solids, 31(1), 13-20. https://doi.org/10.1016/j.euromechsol.2011.06.016
  43. Matsunaga, H. (2007), "Free vibration and stability of angle-ply laminated composite and sandwich plates under thermal loading", Compos. Struct., 77(2), 249-262. https://doi.org/10.1016/j.compstruct.2005.07.002
  44. Mehrabi, P., Honarbari, S., Rafiei, S., Jahandari, S. and Alizadeh Bidgoli, M. (2021), "Seismic response prediction of FRC rectangular columns using intelligent fuzzy-based hybrid metaheuristic techniques", J. Ambient Intell. Human. Comput., 12, 10105-10123. https://doi.org/10.1007/s12652-020-02776-4
  45. Mehrabi, P., Shariati, M., Kabirifar, K., Jarrah, M., Rasekh, H., Trung, N.T., Shariati, A. and Jahandari, S. (2021), "Effect of pumice powder and nano-clay on the strength and permeability of fiber-reinforced pervious concrete incorporating recycled concrete aggregate", Constr. Build. Mater., 287, 122652. https://doi.org/10.1016/j.conbuildmat.2021.122652
  46. Ming, Y., Zandi, Y., Gholizadeh, M., Oslub, K., Khadimallah, M.A. and Issakhov, A. (2021), "Computer simulation for stability performance of sandwich annular system via adaptive tuned deep learning neural network optimization", Adv. Nano Res., 11(1), 083, https://doi.org/10.12989/anr.2021.11.1.083
  47. Moradi, H., Atashi, P., Amelirad, O., Yang, J.-K., Chang, Y.-Y. and Kamranifard, T. (2022), "Machine learning modeling and DOE-assisted optimization in synthesis of nanosilica particles via Stober method", Adv. Nano Res., 12(4), 387. https://doi.org/10.12989/anr.2022.12.4.387
  48. Pandey, S. and Pradyumna, S. (2015), "Free vibration of functionally graded sandwich plates in thermal environment using a layerwise theory", Eur. J. Mech. A Solids, 51, 55-66. https://doi.org/10.1016/j.euromechsol.2014.12.001
  49. Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z. and Koratkar, N. (2009), "Enhanced mechanical properties of nanocomposites at low graphene content", ACS Nano, 3(12), 3884-3890, https://doi.org/10.1021/nn9010472.
  50. Rao, R., Sahmani, S. and Safaei, B. (2021), "Isogeometric nonlinear bending analysis of porous FG composite microplates with a central cutout modeled by the couple stress continuum quasi-3D plate theory", Arch. Civil Mech. Eng., 21(3), 98. https://doi.org/10.1007/s43452-021-00250-2
  51. Ren, C., Yu, J., Zhang, C., Liu, X., Zhu, Y. and Yao, W. (2023a), "Micro-macro approach of anisotropic damage: a semi-analytical constitutive model of porous cracked rock", Eng. Fract. Mech., 290, 109483. https://doi.org/10.1016/j.engfracmech.2023.109483
  52. Ren, Z., Zeng, H., Zeng, X., Chen, X. and Wang, X. (2023b), "Effect of nanographite conductive concrete mixed with magnetite sand excited by different alkali activators and their combinations on the properties of conductive concrete", Buildings, 13(7), 1630. https://doi.org/10.3390/buildings13071630
  53. Safaei, B. (2021), "Frequency-dependent damped vibrations of multifunctional foam plates sandwiched and integrated by composite faces", Eur. Phys. J. Plus, 136(6), 1-16. https://doi.org/10.1140/epjp/s13360-021-01632-4
  54. Safaei, B., Onyibo, E.C., Goren, M., Kotrasova, K., Yang, Z., Arman, S. and Asmael, M. (2023), "Free vibration investigation on RVE of proposed honeycomb sandwich beam and material selection optimization", Facta Univ. Series Mech. Eng., 21(1), 031-050. https://doi.org/10.22190/FUME220806042S
  55. Sahmani, S. and Safaei, B. (2021), "Microstructural-dependent nonlinear stability analysis of random checkerboard reinforced composite micropanels via moving Kriging meshfree approach", Eur. Phys. J. Plus, 136, 1-31. https://doi.org/10.1140/epjp/s13360-021-01706-3
  56. Sarkon, G.K., Safaei, B., Kenevisi, M.S., Arman, S. and Zeeshan, Q. (2022), "State-of-the-art review of machine learning applications in additive manufacturing, from design to manufacturing and property control", Arch. Comput. Meth. Eng., 29(7), 5663-5721. https://doi.org/10.1007/s11831-022-09786-9
  57. Shen, H.S. and Xiang, Y. (2014), "Nonlinear vibration of nanotube-reinforced composite cylindrical panels resting on elastic foundations in thermal environments", Compos. Struct., 111, 291-300. https://doi.org/10.1016/j.compstruct.2014.01.010
  58. Shi, M.L., Lv, L. and Xu, L. (2023), "A multi-fidelity surrogate model based on extreme support vector regression: Fusing different fidelity data for engineering design", Eng. Comput., 40(2), 473-493. https://doi.org/10.1108/EC-10-2021-0583
  59. Shu, Z., Ning, B., Chen, J., Li, Z., He, M., Luo, J. and Dong, H. (2023), "Reinforced moment-resisting glulam bolted connection with coupled long steel rod with screwheads for modern timber frame structures", Earthq. Eng. Struct. Dyn., 52(4), 845-864. https://doi.org/10.1002/eqe.3789
  60. Sobhani, E. (2023a), "Improvement of vibrational characteristics of multipurpose structures (plate and shells) used in aerospace components by deploying Graphene Oxide Powders (GOPs) in a matrix as a nano-reinforcement: A comprehensive study", Eng. Anal. Bound. Elem., 146, 598-635. https://doi.org/10.1016/j.enganabound.2022.11.014
  61. Sobhani, E. (2023b), "Vibrational characteristic simulations regarding connecting two different semi-spheroidal shells and a full-spheroidal shell with a conical shell categorized in underwater structures", Ocean Eng., 276, 114252. https://doi.org/10.1016/j.oceaneng.2023.114252
  62. Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T. and Ruoff, R.S. (2006), "Graphene-based composite materials", Nature, 442(7100), 282-286, https://doi.org/10.1038/nature04969.
  63. Sun, L., Wang, C., Zhang, C., Yang, Z., Li, C. and Qiao, P. (2023), "Experimental investigation on the bond performance of sea sand coral concrete with FRP bar reinforcement for marine environments", Adv. Struct. Eng., 26(3), 533-546. https://doi.org/10.1177/13694332221131153
  64. Taheri, E., Firouzianhaji, A., Mehrabi, P., Vosough Hosseini, B. and Samali, B. (2020), "Experimental and numerical investigation of a method for strengthening cold-formed steel profiles in bending", Appl. Sci., 10(11), 3855. https://doi.org/10.3390/app10113855
  65. Taheri, E., Firouzianhaji, A., Usefi, N., Mehrabi, P., Ronagh, H. and Samali, B. (2019), "Investigation of a method for strengthening perforated cold-formed steel profiles under compression loads", Appl. Sci., 9(23), 5085. https://doi.org/10.3390/app9235085
  66. Taheri, E., Mehrabi, P., Rafiei, S. and Samali, B. (2021), "Numerical evaluation of the upright columns with partial reinforcement along with the utilisation of neural networks with combining feature-selection method to predict the load and displacement", Appl. Sci., 11(22), 11056. https://doi.org/10.3390/app112211056
  67. Tang, Y., Wang, Y., Wu, D., Chen, M., Pang, L., Sun, J., Feng, W. and Wang, X. (2023), "Exploring temperature-resilient recycled aggregate concrete with waste rubber: An experimental and multi-objective optimization analysis", Rev. Adv. Mater. Sci., 62(1), 20230347. https://doi.org/10.1515/rams-2023-0347
  68. Tian, L.M., Li, M.H., Li, L., Li, D.Y. and Bai, C. (2023), "Novel joint for improving the collapse resistance of steel frame structures in column-loss scenarios", Thin Wall. Struct., 182, 110219. https://doi.org/10.1016/j.tws.2022.110219
  69. Toghroli, A., Mehrabi, P., Shariati, M., Trung, N.T., Jahandari, S. and Rasekh, H. (2020), "Evaluating the use of recycled concrete aggregate and pozzolanic additives in fiber-reinforced pervious concrete with industrial and recycled fibers", Constr. Build. Mater., 252, 118997. https://doi.org/10.1016/j.conbuildmat.2020.118997
  70. Wang, X. and Zhang, L. (2021), "Physics-informed neural networks: A deep learning framework for solving the vibrational problems", Adv. Nano Res., 11(5), 495, https://doi.org/10.12989/anr.2021.11.5.495
  71. Wang, D., Ren, B., Cui, B., Wang, J., Wang, X. and Guan, T. (2021a), "Real-time monitoring for vibration quality of fresh concrete using convolutional neural networks and IoT technology", Auto. Constr., 123, 103510. https://doi.org/10.1016/j.autcon.2020.103510
  72. Wang, P., Yuan, P., Sahmani, S. and Safaei, B. (2021b), "Surface stress size dependency in nonlinear free oscillations of FGM quasi-3D nanoplates having arbitrary shapes with variable thickness using IGA", Thin Wall. Struct., 166, 108101. https://doi.org/10.1016/j.tws.2021.108101
  73. Wang, Y., Teng, C., Hu, T. and Wang, J. (2021c), "Total conversion from graphite to few-layer graphene nanocomposite", Carbon Trends, 2, 100017, https://doi.org/10.1016/j.cartre.2020.100017.
  74. Wang, H., Zhang, X. and Jiang, S. (2022a), "A laboratory and field universal estimation method for tire-pavement interaction noise (TPIN) based on 3D image technology", Sustainability. 14(19), 12066. https://doi.org/10.3390/su141912066
  75. Wang, M., Yang, X. and Wang, W. (2022b), "Establishing a 3D aggregates database from X-ray CT scans of bulk concrete", Constr. Build. Mater., 315, 125740. https://doi.org/10.1016/j.conbuildmat.2021.125740
  76. Wang, Z., Wang, Q., Jia, C. and Bai, J. (2022c), "Thermal evolution of chemical structure and mechanism of oil sands bitumen", Energy, 244, 123190. https://doi.org/10.1016/j.energy.2022.123190
  77. Wu, J., Yang, Y., Mehrabi, P. and Nasr, E.A. (2023), "Efficient machine-learning algorithm applied to predict the transient shock reaction of the elastic structure partially rested on the viscoelastic substrate", Mech. Adv. Mater. Struct., 1-25. https://doi.org/10.1080/15376494.2023.2183289
  78. Wu, M., Ba, Z. and Liang, J. (2022), "A procedure for 3D simulation of seismic wave propagation considering source-path-site effects: Theory, verification and application", Earthq. Eng. Struct. Dyn., 51(12), 2925-2955. https://doi.org/10.1002/eqe.3708
  79. Wu, Z., Huang, B., Fan, J. and Chen, H. (2023), "Homotopy based stochastic finite element model updating with correlated static measurement data", Measurement, 210, 112512. https://doi.org/10.1016/j.measurement.2023.112512
  80. Xu, L., Cai, M., Dong, S., Yin, S., Xiao, T., Dai, Z., Wang, Y. and Soltanian, M.R. (2022), "An upscaling approach to predict mine water inflow from roof sandstone aquifers", J. Hydrol., 612, 128314. https://doi.org/10.1016/j.jhydrol.2022.128314
  81. Xue-feng, L.I., Liang, K. and Mao-song, H. (2013), "Property-dependent plastic potential theory for geomaterials", Chinese J. Geotech. Eng., 35(9), 1722-1729. https://doi.org/10.1016/j.cjge.2013.100035
  82. Yang, Y. and Zhang, Q. (1997), "A hierarchical analysis for rock engineering using artificial neural networks", Rock Mech. Rock Eng., 30, 207-222. https://doi.org/10.1007/BF01045717
  83. Yang, H.Q., Zeng, Y.Y., Lan, Y.F. and Zhou, X.P. (2014), "Analysis of the excavation damaged zone around a tunnel accounting for geostress and unloading", Int. J. Rock Mech. Min. Sci., 69, 59-66. https://doi.org/10.1016/j.ijrmms.2014.03.003
  84. Yang, H.Q., Li, Z., Jie, T.Q. and Zhang, Z.Q. (2018a), "Effects of joints on the cutting behavior of disc cutter running on the jointed rock mass", Tunnell. Undergr. Space Technol., 81, 112-120. https://doi.org/10.1016/j.tust.2018.07.023
  85. Yang, H.Q., Xing, S.G., Wang, Q. and Li, Z. (2018b), "Model test on the entrainment phenomenon and energy conversion mechanism of flow-like landslides", Eng. Geol., 239, 119-125. https://doi.org/10.1016/j.enggeo.2018.03.023
  86. Yang, H., Wang, Z. and Song, K. (2020), "A new hybrid grey wolf optimizer-feature weighted-multiple kernel-support vector regression technique to predict TBM performance", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01217-2
  87. Yang, Z., Lu, H., Sahmani, S. and Safaei, B. (2021), "Isogeometric couple stress continuum-based linear and nonlinear flexural responses of functionally graded composite microplates with variable thickness", Arch. Civil Mech. Eng., 21, 1-19. https://doi.org/10.1007/s43452-021-00264-w
  88. Yang, H., Song, K. and Zhou, J. (2022a), "Automated recognition model of geomechanical information based on operational data of tunneling boring machines", Rock Mech. Rock Eng., 1-18. https://doi.org/10.1007/s00603-021-02723-5
  89. Yang, J., Fu, L.Y., Zhang, Y. and Han, T. (2022b), "Temperature- and pressure-dependent pore microstructures using static and dynamic moduli and their correlation", Rock Mech. Rock Eng., 55(7), 4073-4092. https://doi.org/10.1007/s00603-022-02829-4
  90. Yang, H., Chen, C., Ni, J. and Karekal, S. (2023), "A hyperspectral evaluation approach for quantifying salt-induced weathering of sandstone", Sci. Total Environ., 885, 163886. https://doi.org/10.1016/j.scitotenv.2023.163886
  91. Yao, W., Yu, J., Liu, X., Zhang, Z., Feng, X. and Cai, Y. (2023), "Experimental and theoretical investigation of coupled damage of rock under combined disturbance", Int. J. Rock Mech. Min. Sci., 164, 105355. https://doi.org/10.1016/j.ijrmms.2023.105355
  92. Yuan, J., Wang, T.J. and Chen, J. (2023), "Microscopic mechanism study of the creep properties of soil based on the energy scale method", Front. Mater., 10, 1137728. https://doi.org/10.3389/fmats.2023.1137728
  93. Zhang, W., Kang, S., Liu, X., Lin, B. and Huang, Y. (2023), "Experimental study of a composite beam externally bonded with a carbon fiber-reinforced plastic plate", J. Build. Eng., 71, 106522. https://doi.org/10.1016/j.jobe.2023.106522
  94. Zhen, W., Cheung, Y.K., Lo, S. and Wanji, C. (2010), "On the thermal expansion effects in the transverse direction of laminated composite plates by means of a global-local higher-order model", Int. J. Mech. Sci., 52(7), 970-981. https://doi.org/10.1016/j.ijmecsci.2010.03.013.
  95. Zhou, S., Lu, C., Zhu, X. and Li, F. (2021), "Preparation and characterization of high-strength geopolymer based on BH-1 lunar soil simulant with low alkali content", Engineering, 7(11), 1631-1645. https://doi.org/10.1016/j.eng.2020.10.016
  96. Zhou, X., Wang, P., Al-Dhaifallah, M., Rawa, M. and Khadimallah, M.A. (2022), "A machine learning-based model for the estimation of the critical thermo-electrical responses of the sandwich structure with magneto-electro-elastic face sheet", Adv. Nano Res., 12(1), 81. https://doi.org/10.12989/anr.2022.12.1.081
  97. Zhou, C., Wang, J., Shao, X., Li, L., Sun, J. and Wang, X. (2023a), "The feasibility of using ultra-high performance concrete (UHPC) to strengthen RC beams in torsion", J. Mater. Res. Technol., 24, 9961-9983. https://doi.org/10.1016/j.jmrt.2023.05.185
  98. Zhou, F., Li, W., Hu, Y., Huang, L., Xie, Z., Yang, J., Wu, D. and Chen, Z. (2023b), "Moisture diffusion coefficient of concrete under different conditions", Buildings, 13(10), 2421. https://doi.org/10.3390/buildings13102421
  99. Zhou, T., Yu, F., Li, L., Dong, Z. and Fini, E.H. (2023c), "Swelling-degradation dynamic evolution behaviors of bio-modified rubberized asphalt under thermal conditions", J. Clean. Prod., 426, 139061. https://doi.org/10.1016/j.jclepro.2023.139061