DOI QR코드

DOI QR Code

Investigating the effect of using three pozzolans (including the nanoadditive) in combination on the formation and development of cracks in concretes using non-contact measurement method

  • Grzegorz Ludwik Golewski (Department of Structural Engineering, Faculty of Civil Engineering and Architecture, Lublin University of Technology)
  • 투고 : 2022.09.13
  • 심사 : 2022.12.06
  • 발행 : 2024.03.25

초록

This paper presents results of visual analysis of cracks formation and propagation of concretes made of quaternary binders (QBC). A composition of the two most commonly used mineral additives, i.e. fly ash (FA) and silica fume (SF) in combination with nanosilica (nS), has been proposed as a partial replacement of the cement. The principal objective of the present study is to achieve information about the effect of simultaneous incorporation of three pozzolans as partial replacement to the OPC on the fracture processes in concretes made from quaternary binders (QBC). The modern and precise non-contact measurement method (NCMM) via digital image correlation (DIC) technique was used, during the studies. In the course of experiments it was established that the substitution of OPC with three pozzolans including the nanoadditive in FA+SF+nS FA+SF+nS combination causes a clear change of brittleness and behavior during fractures in QBCs. It was found that the shape of cracks in unmodified concrete was quasi-linear. Substitution of the binder by SCMs resulted in a slight heterogeneity of the structure of the QBC, including only SF and nS, and clear heterogeneity for concretes with the FA additive. In addition, as content of FA rises throughout each of QBC series, material becomes more ductile and shows less brittle failure. It means that an increase in the FA content in the concrete mix causes a significant change in fracture process in this composite in comparison to concrete with the addition of silica modifiers only.

키워드

과제정보

The research leading to these results has received funding from the MINIATURA 2 Grant, No. 2018/02/X/ST8/02726: funded by National Science Center of Poland.

참고문헌

  1. Abood, A.M., Khazal, H. and Hassan, A.F. (2022), "On the determination of first‑mode stress intensity factors and T‑stress in a continuous functionally graded beam using digital image correlation method", AIMS Mater. Sci., 9(1), 56-70. https://doi.org/10.3934/matersci.2022004.
  2. Abu Al-Rub, R.K., Tyson, B.M., Yazdanbakhsh, A. and Grasley, Z. (2012), "Mechanical properties of nanocmposite cement incorporating surface-trated and untreated carbon nanotubes and carbon nanofibers", J. Nanomech. Micromech., 2(1), 1-6. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000041.
  3. Alimoradzadeh, M. and Akbas, S.D. (2022), "Superharmonic and subharmonic resonances of a carbon nanotube-reinforced composite beam", Adv. Nano Res., 12(4), 353-363. https://doi.org/10.12989/ANR.2022.12.4.353.
  4. Amran, M., Onaizi, A.M., Qader, D.N., Murali, G. (2022), "Innovative use of fly ash-finely powdered glass cullet as a nano additives for a sustainable concrete: Strength and micro-structure and cost analysis", C. Stud. Constr. Mater., 17, e01688. https://doi.org/10.1016/j.cscm.2022.e01688.
  5. Ashok, M., Parande, A.K. and Jayabalan, P. (2017), "Strength and durability study on cement mortar containing nano materials", Adv. Nano Res., 5(2), 99-111. https://doi.org/10.12989/ANR.2017.5.2.099.
  6. Aydogdu, M. (2014), "On the vibration of aligned carbon nanotube reinforced composite beams", Adv. Nano Res., 2(4), 199-210. https://doi.org/10.12989/ANR.2014.2.4.199.
  7. Balapour, M., Joshaghani, A., Althoey, F. (2018), "Nano-SiO2 contribution to mechanical, durability, fresh and microstructural characteristics of concrete: A review", Constr. Build. Mater., 181, 27-41. https://doi.org/10.1016/j.conbuildmat.2018.05.266.
  8. Bhagawati, D., Thakur, S. and Karak, N. (2016), "Castor oil based hyperbranched polyester/bitumen modified fly ash nanocomposite", Adv. Nano Res., 4(1), 15-29. https://doi.org/10.12989/ANR.2016.4.1.015.
  9. Biricik, H. and Sarier, N. (2014), "Comparative study of the characteristics of nanosilica-, silica fume- and fly ash-incorporated cement mortars", Mater. Res., 17, 570-582. https://doi.org/10.1590/S1516-14392014005000054.
  10. Bostanci, S.C., Ajogi, E.I., Kew, H. (2024), "Waste coal cement concrete for sustainable production", Eur. J. Env. Civ. Eng., 28(1), 197-221. https://doi.org/10.1080/19648189.2023.2206467.
  11. Bostanci, S.C., Mukesh, L., Hsein, K. (2016), "Portland slag and composites cement concretes: engineering and durability properties", J. Clean. Prod., 112, 542-552. https://doi.org/10.1016/j.jclepro.2015.08.070.
  12. Celik, F., Yildiz, O. and Bozkir, S.M. (2022), "Observation of nano powders and fly ash usage effects on the fluidity features of grouts", Adv. Nano Res., 13(1), 13-28. https://doi.org/10.12989/ANR.2022.13.1.013.
  13. Chakartnarodom, P., Polsilapa, S., Prakaypan, W., Ineure, P., Chuankrerkkul, N., Laitila, E.A., Kongkajun, N. (2024), "Upcycling low-grade coal fly ash for the production of fly ash fibers and their applications in fiber-reinforced cement composites", Constr. Build. Mater., 414, 134880. https://doi.org/10.1016/j.conbuildmat.2024.134880.
  14. Craciun, E.M. (2008), "Energy criteria for crack propagation in prestresses elastic composites", Sol. Mech, Appl. 154, 193-237. https://doi.org/10.1007/978-1-4020-8772-1_7.
  15. Craciun, E.M. (2016), "Prestressed orthotropic material containing and elliptical hole", Adv. Struct. Mater. 60, 327-336. https://doi.org/10.1007/978-981-10-0959-4_18.
  16. Craciun, E.M. and Soos, E. (2006), "Anti-plane states in an anisotropic elastic body containing an elliptical hole", Math. Mech. Solids. 11(5), 459-466. https://doi.org/10.1177/10812865050441.
  17. Cui, Y., Wang, L., Liu, J., Liu, R. and Pang, B. (2022), "Impact of particle size of fly ash on the early compressive strength of concrete: Experimental investigation and modelling", Constr. Build. Mater., 323, 126444. https://doi.org/10.1016/j.conbuildmat.2022.126444.
  18. Deganello, F., Bos, J.W.G. (2022), "Innovations in energy engineering and cleaner production: A sustainable chemistry perspective", Sustain. Chem., 3, 112-113. https://doi.org/10.3390/suschem3010008
  19. Devarangadi, M., Vuppala, S., Shankar, M.U., Raghunandan, M.E. (2024), "Effect of collated fly ash, GGBS and silica fume on index and engineering properties of expansive clays as a sustainable landfill liner", Clean. Mater., 11, 100219.
  20. El-Chabib, H. and Ibrahim, A. (2013), "The performance of high-strength flowable concrete made with binary, ternary, or quaternary binder in hot climate", Constr. Build. Mater., 47, 245-253. https://doi.org/10.1016/j.conbuildmat.2013.05.062.
  21. Fakoor, M., Rafiee, R. and Zare, S. (2019), "Equivalent reinforcement isotropic model for fracture investigation of orthotropic materials", Steel. Compos. Struct., 30(1), 1-12. https://doi.org/10.12989/scs.2019.30.1.001.
  22. Fakoor M. and Shahsavar S. (2021), "The effect of T-stress on mixed mode I/II fracture of composite materials: reinforcement isotropic solid model in combination with maximum shear stress theory", Int. J. Sol. Struct., 229, 111145. https://doi.org/10.1016/j.ijsolstr.2021.111145.
  23. Fakoor, M., Sabour, M.H. and Khansari, N.M. (2014), "A new approach for investigation of damage zone properties orthotropic materials", Eng. Solid Mech., 992(4), 283-292. https://doi.org/10.5267/j.esm.2014.8.004.
  24. Foghi, E.J., Vo, T., Rezania, M., Nezhad, M.M., Ferrara, L. (2024), "Early age hydration behaviour of foam concrete containing a coal mining waste: novel experimental procedures and effects of capillary pressure", Constr. Build. Mater., 414, 134811. https://doi.org/10.1016/j.conbuildmat.2023.134811.
  25. Fu, J., Safaei, M.R., Haeri, H., Sarfarazi, V., Marji, M.F., Xu, L. and Arefnia, A. (2022), "Experimental investigation on deformation behavior of circular underground opening in hard soil using a 3D physical model", J. Min. Env., 13(3), 727-749. https://doi.org/10.22044/jme.2022.12350.2241.
  26. Garg, R., Garg, R. and Eddy, N.O. (2021), "Influence of pozzolans on properties of cementitious materials: A review", Adv. Nano Res., 11(4), 423-436. https://doi.org/10.12989/ANR.2021.11.4.423.
  27. Gil, D.M. and Golewski, G.L. (2018a), "Effect of silica fume and siliceous fly ash addition on the fracture toughness of plain concrete in mode I", IOP Conf. Ser. Mater. Sci. Eng., 416, 012065. https://doi.org/10.1088/1757-899X/416/1/012065.
  28. Gil, D.M. and Golewski, G.L. (2018b), "Potential of siliceous fly ash and silica fume as a substitute of binder in cementitious concretes", E3S Web Conf., 49, 00030. https://doi.org/10.1051/e3sconf/20184900030.
  29. Golewski, G.L. (2015), "Studies of natural radioactivity of concrete with siliceous fly ash addition",Cem. Wapno Beton, 2, 106-114.
  30. Golewski, G.L. (2017a), "Determination of fracture toughness in concretes containing siliceous fly ash during mode III loading", Struct. Eng. Mech., 62(1), 1-9. https://doi.org/10.12989/sem.2017.62.1.001.
  31. Golewski, G.L. (2017b), "Effect of fly ash addition on the fracture toughness of plain concrete at third model of fracture", J. Civ. Eng. Manag, 23(5), 613-620. https://doi.org/10.3846/13923730.2016.1217923.
  32. Golewski, G.L. (2017c), "Generalized fracture toughness and compressive strength of sustainable concrete including low calcium fly ash. Characterization of fly ash microstructure", Materials, 10, 1393. https://doi.org/10.3390/ma10121393.
  33. Golewski, G.L. (2018a), "An analysis of fracture toughness in concrete with fly ash addition, considering all models of cracking", IOP Conf. Ser. Mater. Sci. Eng., 416, 012029. https://doi.org/10.1088/1757-899X/416/1/012029.
  34. Golewski, G.L. (2018b), "Effect of curing time on the fracture toughness of fly ash concrete composites", Compos. Struct., 185, 105-112. https://doi.org/10.1016/j.compstruct.2017.10.090.
  35. Golewski, G.L. (2018c), "Green concrete composite incorporating fly ash with high strength and fracture toughness", J. Clean. Prod., 172, 218-226. https://doi.org/10.1016/j.jclepro.2017.10.065.
  36. Golewski, G.L. (2018d), "Evaluation of morphology and size of cracks of the Interfacial Transition Zone (ITZ) in concrete containing fly ash (FA)", J. Hazard. Mater., 357, 298-304. https://doi.org/10.1016/j.jhazmat.2018.06.016.
  37. Golewski, G.L. (2019a), "A new principles for implementation and operation of foundations for machines: A review of recent advances", Struct. Eng. Mech., 71(3), 317-327. https://doi.org/10.12989/SEM.2019.71.3.317.
  38. Golewski, G.L. (2019b), "Physical characteristics of concrete, essential in design of fracture-resistant, dynamically loaded reinforced concrete structures", Mater. Des. Proc. Comm., 1(5), e82. https://doi.org/10.1002/mdp2.82.
  39. Golewski, G.L. (2020a), "Energy savings associated with the use of fly ash and nanoadditives in the cement composition", Energies, 13, 2184. https://doi.org/10.3390/en13092184.
  40. Golewski, G.L. (2020b), "On the special construction and materials conditions reducing the negative impact of vibrations on concrete structures", Mater. Today. Procs., 45, 4344-4348. https://doi.org/10.1016/j.matpr.2021.01.031.
  41. Golewski, G.L. (2020c), "Changes in the fracture toughness under mode II loading of low calcium fly ash (LCFA) concrete depending on ages", Materials, 13, 5241. https://doi.org/10.3390/ma13225241.
  42. Golewski, G.L. (2021a), "Green concrete based on quaternary binders with significant reduced of CO2 emission", Energies, 14, 4558. https://doi.org/10.3390/en14154558.
  43. Golewski, G.L. (2021b), "The beneficial effect of the addition of fly ash on reduction of the size of microcracks in the ITZ of concrete composites under dynamic loading", Energies, 14, 668. https://doi.org/10.3390/en14030668.
  44. Golewski, G.L. (2022a), "The specificity of shaping and execution of monolithic pocket foundations (PF) in hall buildings", Buildings, 12, 192. https://doi.org/10.3390/buildings12020192.
  45. Golewski, G.L. (2022b), "An extensive investigations of fracture parameters of concretes based on quaternary binders (QBC) by means of the DIC technique", Constr. Build. Mater., 351, 128823. https://doi.org/10.1016/j.conbuildmat.2022.128823.
  46. Golewski, G.L. (2022c), "Fracture performance of cementitious composites based on quaternary blended cements", Struct. Eng. Mech., 15, 6023. https://doi.org/10.3390/ma15176023.
  47. Golewski, G.L. (2022d), "Comparative measurements of fracture toughness combined with visual analysis of cracks propagation using the DIC technique of concretes based on cement matrix with a highly diversified composition", Theor. Appl. Fract. Mech., 121, 103553. https://doi.org/10.1016/j.tafmec.2022.103553.
  48. Golewski, G.L. (2022e), "The role of pozzolanic activity of siliceous fly ash in the formation of the structure of sustainable cementitious composites", Sustain. Chem., 3, 520-534. https://doi.org/10.3390/suschem3040032.
  49. Golewski, G.L. (2023a), "Combined effect of coal fly ash (CFA) and nanosilica (nS) on the strength parameters and micro-structural properties of eco-friendly concrete", Energies, 16, 452. https://doi.org/10.3390/en16010452.
  50. Golewski, G.L. (2023b), "Study of strength and microstructure of a new sustainable concrete incorporating pozzolanic materials", Struct. Eng. Mech., 86(4), 431-441. https://doi.org/10.12989/sem.2023.86.4.431.
  51. Golewski, G.L. (2023c), "Concrete composites based on quaternary blended cements with a reduced width of initial microcracks", Appl. Sci., 13, 7338. https://doi.org/10.3390/app13127338.
  52. Golewski, G.L. (2023d), "Mechanical properties and brittleness of concrete made by combined fly ash, silica fume and nanosilica with ordinary Portland cement", AIMS Mater. Sci., 10(3), 390-404. https://doi.org/10.3934/matersci.2023021.
  53. Golewski, G.L. (2023e), "The effect of the addition of coal fly ash (CFA) on the control of water movement within the structure of the concrete", Materials, 16, 5218. https://doi.org/10.3390/ma16155218.
  54. Golewski, G.L. (2023f), "Examination of water absorption of low volume fly ash concrete (LVFAC) under water immersion condition", Mater. Res. Express, 10(8), 085505. https://doi.org/10.1088/2053-1591/acedef.
  55. Golewski, G.L. (2023g), "Assessing of water absorption on concrete composites containing fly ash up to 30% in regards to structures completely immersed in water", C. Stud. Constr. Mater., 19, e02337. https://doi.org/10.1016/j.cscm.2023.e02337.
  56. Golewski, G.L. (2023h), "Effect of coarse aggregate graiding on mechanical parameters and fracture toughness of limestone concrete", Infrastructures, 8, 117. https://doi.org/10.3390/infrastructures8080117.
  57. Golewski, G.L. (2023i), "The phenomenon of cracking in cement concretes and reinforced concrete structures: The mechanism of cracks formation, causes of their initiation, types and places of occurrence, and methods of detection-A review", Buildings, 13, 765. https://doi.org/10.3390/buildings13030765.
  58. Golewski, G. and Sadowski, T. (2006), "Fracture toughness at shear (mode II) of concretes made of natural and broken aggregates", Brittle Matrix Compos., 8, 537-546. https://doi.org/10.1533/9780857093080.537.
  59. Golewski, G.L. and Sadowski, T. (2012), "Experimental investigation and numerical modeling fracture processes under Mode II in concrete composites containing fly-ash additive at early age", Sol. Stat. Phenom., 188, 158-163. https://doi.org/10.4028/www.scientific.net/SSP.188.158.
  60. Golewski, G.L. and Gil, D.M. (2021), "Studies of fracture toughness in concretes containing fly ash and silica fume in the first 28 days of curing", Materials, 14, 319. https://doi.org/10.3390/ma14020319.
  61. Golewski, G.L. and Szostak, B. (2021a), "Strengthening the very early-age structure of cementitious composites with coal fly ash via incorporating a novel nanoadmixture based on C-S-H phase activators", Constr. Build. Mater., 312, 125426. https://doi.org/10.1016/j.conbuildmat.2021.125426.
  62. Golewski, G.L. and Szostak, B. (2021b), "Application of the C-S-H phase nucleating agents to improve the performance of sustainable concrete composites containing fly ash for use in the precast concrete industry", Materials, 14, 6514. https://doi.org/10.3390/ma14216514.
  63. Golewski, G.L. and Szostak, B. (2022), "Strength and micro-structure of composites with cement matrixes modified by fly ash and active seeds of C-S-H phase", Struct. Eng. Mech., 82(4), 543-556. https://doi.org/10.12989/SEM.2022.82.4.543.
  64. Guan, J., Yuan, P., Hu, X., Qing, L. and Yao, X. (2019), "Statistical analysis of concrete fracture using normal distribution pertinent to maximum aggregate size", Theor. Appl. Fract. Mech., 101, 236-253. https://doi.org/10.1016/j.tafmec.2019.03.004.
  65. Guan, J., Song, Z., Zhang, M., Yao, X., Li, L. and Hu, S. (2021), "Concrete fracture considering aggregate grading", Theor. Appl. Fract. Mech., 112, 102833. https://doi.org/10.1016/j.tafmec.2020.102833
  66. Guan, J., Yin, Y., Li, Y., Yao, X. and Li, L. (2022), "A design method for determining fracture toughness and tensile strength pertinent to concrete sieving curve", Eng. Fract. Mech., 271, 108596. https://doi.org/10.1016/j.engfracmech.2022.108596.
  67. Gupta, M., Raj, R., Kumar Sahu, A. (2022), "Mechanical properties of high strength concrete incorporating chopped basalt fibers: experimental and analytical study", Mater. Res. Express, 9, 125305. https://doi.org/10.1088/2053-1591/aca644.
  68. Haeri, H. (2015), "Experimental crack analyses of concrete-like CSCBD specimens using a higher order DDM", Comp. Concr. 16(6), 881-896. https://doi.org/10.12989/cac.2015.16.6.881.
  69. Haeri, H. and Sarfarazi V. (2016), "Numerical simulation of tensile failure of concrete using Particle Flow Code (PFC)", Comp. Concr. 18(1), 039-051. https://doi.org/10.12989/cac.2016.18.1.039.
  70. Han, F., Pu, S., Zhou, Y., Zhang, H. and Zhang, Z. (2021), "Effect of ultrafine mineral admixtures on the rheological properties of fresh cement paste: A review", J. Build. Eng., 51, 104313. https://doi.org/10.1016/j.jobe.2022.104313.
  71. Jiang, X., Lang, L., Liu, S., Mu, F., Wang, Y., Zhang, Z., Han, L., Duan, S., Wang, P., Li, J. (2024), "Stabilization of iron ore tailing with low-carbon lime/carbide slag-activated ground granulated blast-furnace slag and coal fly ash", Constr. Build. Mater., 413, 134946. https://doi.org/10.1016/j.conbuildmat.2024.134946.
  72. Kaloop, M.R., Elrahman, M.A. and Hu, J.W. (2022), "Nondestructive tests for defections detection of nanoparticles in cement-based materials: A review", Adv. Nano Res., 12(1), 1-23. https://doi.org/10.12989/ANR.2022.12.1.001.
  73. Karim, R., Hamidul Islam, Md., Datta, S.D., Kashem, A. (2024), "Synergistic effects of supplementary cementitious materials and compressive strength prediction of concrete using machine learning algorithms with SHAP and PDP analyses", C. Stud. Constr. Mater., 20, e02828. https://doi.org/10.1016/j.cscm.2023.e02828.
  74. Khater, H.M. (2016), "Nano-Silica effect on the physico-mechanical properties of geopolymer composites", Adv. Nano Res., 4(3), 181-195. https://doi.org/10.12989/ANR.2016.4.3.181.
  75. Kim, D. and Park, K. (2019), "Study on the characteristics of grout material using ground granulated blast furnace slag and carbon fiber", Geom. Eng., 19(4), 361-368. https://doi.org/10.12989/GAE.2019.19.4.361.
  76. Kurtinaitiene, M., Mazeika, K., Ramanavicius, S., Pakstas, V. and Jagminas, A. (2016), "Effect of additives on the hydrothermal synthesis of manganese ferrite nanoparticles", Adv. Nano Res., 4(1), 1-14. https://doi.org/10.12989/ANR.2016.4.1.001.
  77. Lam, L. Wong, Y.L. and Poon, C.S. (1998), "Effect of fly ash and silica fume on compressive and fracture behaviors of concreto," Cem. Concr. Res., 28(2), 271-283. https://doi.org/10.1016/S0008-8846(97)00269-X.
  78. Lata, P. and Kaur, I. (2019a), "Effect of rotation and inclined load on transversely isotropic magneto thermoelastic solid", Struct. Eng. Mech., 70(2), 245-255. https://doi.org/10.12989/sem.2019.70.2.245.
  79. Lata, P. and Kaur, I. (2019b), "Thermomechanical interactions in transversely isotropic magneto thermoelastic solid with two temperatures and without Energy dissipation", Steel Compos. Struct., 32(6), 779-793. https://doi.org/10.12989/scs.2019.32.6.779.
  80. Li, L., Zhang, Y., Hubler, M.H. and Xi, Y. (2021), "Experimental study on nanoparticle injection technology for remediating leaks in the cement from wellbore systems", J. Petrol. Sci. Eng., 203, 108829. https://doi.org/10.1016/j.petrol.2021.108829.
  81. Li, X. and Zhang, Q. (2021), "Influence behavior of phosphorus slag and fly ash on the interface transition zone in concrete prepared by cement-red mud", J. Build. Eng., 49, 104017. https://doi.org/10.1016/j.jobe.2022.104017.
  82. Li, L., Wang, M. and Hubler, M.H. (2022), "Carbon nanofibers (CNFs) dispersed in ultra-high performance concrete (UHPC): Mechanical property, workability and permeability investigation", Cem. Concr. Compos., 131, 104592. https://doi.org/10.1016/j.cemconcomp.2022.104592.
  83. Li, L., Wang, X., Du, H. and Han, B. (2022), "Comparison of compressive fatigue performance of cementitious composites with different types of carbon nanotube", Int. J. Fat., 165, 107178. https://doi.org/10.1016/j.ijfatigue.2022.107178.
  84. Li, Y., Wu, B. and Wang, R. (2022), "Critical review and gap analysis on the use of high-volume fly ash as a substitute constituent in concrete", Constr. Build. Mater., 341, 127889. https://doi.org/10.1016/j.conbuildmat.2022.127889.
  85. Lou, Y., Khan, K., Amin, M.N. Ahmad, W., Deifalla, A.F. and Ahmad, A. (2023), "Performance characteristics of cementitious composites modified with silica fume: A systematic review", C. Stud. Constr. Mater., 18, e01753. https://doi.org/10.1016/j.cscm.2022.e01753.
  86. Lou, B. and Ma, F. (2022), "Crack extension resistance of steam-cured concrete under different curing temperature conditions", Theor. Appl. Fract. Mech., 119, 103331. https://doi.org/10.1016/j.tafmec.2022.103331.
  87. Lu, J., Zhou, Z., Zhen, X., Wang, P., Rui, Y. and Cai, X. (2022), "Experimental investigation on mode I fracture characteristics of rock-concrete interface at different ages", Constr. Build. Mater., 349, 128735. https://doi.org/10.1016/j.conbuildmat.2022.128735.
  88. Lyratzakis, A., Tsompanakis, Y. and Psarropoulos, P.N. (2022), "Efficient mitigation of high-speed train vibrations on adjacent reinforced concrete buildings", Constr. Build. Mater., 314, 125653. https://doi.org/10.1016/j.conbuildmat.2021.125653.
  89. Madenci, E. (2021), "Free vibration analysis of carbon nanotube RC nanobeams with variational approaches", Adv. Nano Res., 11(2), 157-171. https://doi.org/10.12989/ANR.2021.11.2.157.
  90. Park, S., Beak, J., Kim, K. and Park, Y.-J. (2021), "Study on reduction effect of vibration propagation due to internal explosion using composite materials", Int. J. Concr. Struct. Mater., 15, 30. https://doi.org/10.1186/s40069-021-00467-8.
  91. Marsavina, L., Berto, F., Negru, R., Serban, D.A. and Linul, E. (2017), "An engineering approach to predict mixed mode fracture of PUR foams based on ASED and micromechanical modelling", Theor. Appl. Fract. Mech. 91, 148-154. https://doi.org/10.1016/j.tafmec.2017.06.008.
  92. Mazloom, M., Abna, A., Karimpour, H., Kkbari-Jamkarani, M. (2023), "The crack propagation of fiber-reinforced self-compacting concrete containing micro-silica and nano-silica", Adv. Nano Res., 15(6), 495-511. https://doi.org/10.12989/ANR.2023.15.6.495.
  93. Mehri Khansari N., Fakoor M. and Berto F. (2019), "Probabilistic micromechanical damage model for mixed mode I/II fracture investigation of composite materials", Theor. Appl. Fract. Mech., 99, 177-193. https://doi.org/10.1016/j.tafmec.2018.12.003.
  94. Meng W. and Khayat K.H. (2016), "Mechanical properties of ultra-high-performance concrete enhanced with graphite nano-platelets and carbon nanofibers", Compos. Part B Eng., 107, 113-122. https://doi.org/10.1016/j.compositesb.2016.09.069.
  95. Murali, G., Abid, S.R., Al-Lami, K., Vatin, N.I., Dixit, S., Fediuk, R. (2023), "Pure and mixed-mode (I/III) fracture toughness of preplaced aggregate fibrous concrete and slurry infiltrated fibre concrete and hybrid combination comprising nano carbon tubes", Constr. Build. Mater., 362, 129696. https://doi.org/10.1016/j.conbuildmat.2022.129696.
  96. Naija, A. and Miled, K. (2022), "Numerical study of the influence of W/C ratio and aggregate shape and size on the ITZ volume fraction in concrete", Constr. Build. Mater., 351, 128950. https://doi.org/10.1016/j.conbuildmat.2022.128950.
  97. Oraka, M. and Sajedi, F. (2021). "Investigating the effect of using three pozzolans separately and in combination on the properties of self-compacting concrete", Adv. Nano Res., 11(2), 141-155. https://doi.org/10.12989/ANR.2021.11.2.141.
  98. Pacheco-Torgal, F. (2017), "High tech startup creation for Energy efficient built environment", Ren. Sust. Ener. Rev., 71, 618-629. https://doi.org/10.1016/j.rser.2016.12.088.
  99. Pantiru, A., Luca, B.I., Barbuta, M. (2023), "Experimental study of mixture proportions and fresh properties of concrete with fly ash and silica fume as a replacement for cement for 3D printing", Environ. Eng. Manag. J., 22(9), 1647-1653. https://doi.org/10.30638/eemj.2023.139.
  100. Rahim, N.I., Mohammed, B.S., Abdulkadir, I. and Dahim, M. (2022), "Effect if crumb rubber, fly ash, and nanosilica on the properties of self-compacting concrete using response surface methodology", Materials, 15, 1501. https://doi.org/10.3390/ma15041501.
  101. Rezaee, M., Yeganegi, A., Namvarpour, M. and Ghassemi, H. (2022), "Fluid flow dynamics in deformed carbon nanotubes with unaffected cross section", Adv. Nano Res., 12(3), 253-261. https://doi.org/10.12989/ANR.2022.12.3.253.
  102. Ren, R., Liang, J.F., Liu, D., Gao, J. and Chen, L. (2020), "Mechanical behavior of crumb rubber concrete under axial compression". Adv. Concr. Constr., 9(3), 249-256. https://doi.org/10.12989/ACC.2020.9.3.249.
  103. Sbahieh, S., McKay, G., Al-Ghamdi, S.G. (2023), "Comprehensive analysis of geopolymer materials: properties, environmental impacts, and applications", Materials, 16, 7363. https://doi.org/10.3390/ma16237363.
  104. Singh, A., Das, S. and Craciun E.M. (2019), "Effect of Thermomechanical Loading on an Edge Crack of Finite Length in an Infinite Orthotropic Strip", Mech. Compos. Mater., 55, 285-296. https://doi.org/10.1007/s11029-019-09812-1.
  105. Smarzewski P. (2019), "Influence of silica fume on mechanical and fracture properties of concrete", Proc. Struct. Integ., 17, 5-12. https://doi.org/10.1016/j.prostr.2019.08.002.
  106. Sohu, S., Bheel, N., Jhatial, A.H., Ansari, A.A. and Shar, I.A. (2022), "Sustainability and mechanical property assessment of concrete incorporating eggshell powder and silica fume as binary and ternary cementitious materials", Env. Sci. Poll. Res., 29(39), 58685-58697. http://doi.org/10.1007/s11356-022019894-5.
  107. Sokhandani, N., Setoodeh, A., Zebarjad, S.M., Nikbin, K. and Wheatley, G. (2022), "The influence of nano-silica on the wear and mechanical performance of vinyl-ester/glass fiber nano-composites", Adv. Nano Res., 13(1), 97-111. https://doi.org/10.12989/ANR.2022.13.1.097.
  108. Szostak, B. and Golewski, G.L. (2018), "Effect of nano admixture of CSH on selected strength parameters of concrete including fly ash", IOP Conf. Ser. Mater. Sci. Eng., 416, 012105. https://doi.org/10.1088/1757-899X/416/1/012105.
  109. Szostak, B and Golewski, G.L. (2020), "Improvement of strength parameters of cement matrix with the addition of siliceous of fly ash by using nanometric C-S-H seeds", Energies, 13, 6734. https://doi.org/10.3390/en13246734.
  110. Szostak, B and Golewski, G.L. (2021), "Rheology of cement pastes with siliceous of fly ash and the C-S-H nano-admixture", Materials, 14, 3640. https://doi.org/10.3390/ma14133640.
  111. Tasdemir, C., Tasdemir, M.A., Lydon, F.D. and Barr B.I.G. (1996), "Effect of silica fume and aggregates size on the brittleness of concrete", Cem. Concr. Res., 26(1), 63-68. https://doi.org/10.1016/0008-8846(95)00180-8.
  112. Tayeh, B.A., Alyousef R., Alabduljabbar, H. and Alaskar, A. (2021), "Recycling of rice husk waste for sustainable concrete: A critical review", J. Clean. Prod., 312, 127734. https://doi.org/10.1016/j.jclepro.2021.127734.
  113. Trivedi, N., Das, S. and Craciun E.M. (2022), "The mathematical study of an edge crack in two different specified models under time-harmonic wave disturbance", Mech. Compos. Mater., 58(1), 1-14. https://doi.org/10.1007/s11029-022-10007-4.
  114. Udeze, O.J., Mohammed, B.S., Adebanjo, A.U., Abdulkadir, I. (2024), "Optimizing an eco-friendly high-density concrete for offshore applications: A study on fly ash partial replacement and graphene oxide nano reinforcement", C. Stud. Chem. Env. Eng., 9, 100592. https://doi.org/10.1016/j.cscee.2023.100592.
  115. UzzalHossain, Md., SunPoon, C., HongDong, Y. and Xuan, D. (2018), "Evaluation of environmental impact distribution methods for supplementary cementitious materials", Ren. Sus. Eng. Rev., 82(1), 597-608. https://doi.org/10.1016/j.rser.2017.09.048.
  116. Valdez, P., Fajardo, G., Juarez, C.A., Duran-Herrera, A., Del Real, J.A. (2015), "Influence of CO2 curing in activated fly ash - Portland cement masonry units", Rom. J. Mater., 45(1), 14-21
  117. Wang, L., Zhang, P., Golewski, G.L., Guan, J. (2023), "Editorial: Fabrication and properties of concrete containing industrial waste", Front. Mater., 10, 1169715. https://doi.org/10.3389/fmats.2023.1169715.
  118. Wu, X. and Fang, T. (2022), "Intelligent computer modeling of large amplitude behavior of FG inhomogeneous nanotubes", Adv. Nano Res., 12(6), 617-627. https://doi.org/10.12989/ANR.2022.12.6.617.
  119. Xie, H., Yang, L., Zhang, Q. Huang, C., Chen, M. and Zhao, K. (2022), "Research energy dissipation and damage evolution of dynamic splitting failure off basalt fiber reinforced concrete", Constr. Build. Mater., 330, 127292. https://doi.org/10.1016/j.conbuildmat.2022.127292.
  120. Xie, T., Yang, G., Zhao, X., Xu, J., Fang, C. (2020), "A unified model for predicting the compressive strength of recycled aggregate concrete containing supplementary cementitious materials", J. Clean. Prod., 251, 119752.
  121. Yang, J.-M. and Kim, J.-K. (2019), "Development and application of a hybrid prestressed segmental concrete grider utilizing low carbon materials", Struct. Eng. Mech., 69(4), 371-381. https://doi.org/10.12989/sem.2019.69.4.371.
  122. Yaseen, N., Alcivar-Bastidas, S., Irfan-ul-Hassan, M., Petroche, D.M., Ullah Qazi, A., Ramirez, A.D. (2024), "Concrete incorporating supplementary cementitious materials: Temporal evolution of compressive strength and environmental life cycle assessment", Heliyon, 10, e25056. https://doi.org/10.1016/j.heliyon.2024.e25056.
  123. Yuan, X. and Liao, G. (2022), "Comprehensive study on the mechanical property and fracture behavior of ultra-high strength concrete", Fulleren. Nanotub. Carbon Nanostruct., 31(1), 51-60. https://doi.org/10.1080/1536383X.2022.2110082.
  124. Zeyad, A.M., Tayeh, B.A. and Yusuf, M.O. (2019), "Strength and transport characteristics of volcanic pumice powder based high strength concrete", Constr. Build. Mater., 216, 314-324. https://doi.org/10.1016/j.conbuildmat.2019.05.026.
  125. Zhang, J., Fu, G.Y., Yu, C.J., Chen, B., Zhao, S.X. and Li, S.P. (2016), "Experimental behavior of circular flyash-concrete-filled steel tubular stub columns", Steel. Compos. Struct., 22(4), 821-835. https://doi.org/10.12989/scs.2016.22.4.821.
  126. Zhang, P., Guan, Q.Y. and Zhang, T.H. (2016), "Fracture behavior of fly ash concrete containing silica fume." Struct. Eng. Mech., 59(2), 261-275. https://doi.org/10.12989/sem.2016.59.2.261.
  127. Zhang, P., Ji-Xiang, G., Xiao-Bing, D., Tian-Hang, Z. and Juan, W. (2016), "Fracture behavior o fly ash concrete containing silica fume", Struct. Eng. Mech., 59(2), 261-275. https://doi.org/10.12989/SEM.2016.59.2.261.
  128. Zhang B., Zhu H. and Lu, F. (2019), "Fracture properties of slag-based alkali-activated seawater coral aggregate", Theor. Appl. Fract. Mech. 115, 103071. https://doi.org/10.1016/j.tafmec.2021.103071.
  129. Zhang, P., Han, S., Golewski, G.L. and Wang, X. (2020), "Nnoparticle-reinforced building materials with applications in civil engineering", Adv. Mech. Eng., 12, 1-4. https://doi.org/10.1177/1687814020965438.
  130. Zhang, P., Sha, D., Li, Q., Zhao, S. and Ling, Y. (2021a), "Effect of nano silica particles on impact resistance and durability of concrete containing coal fly ash." Nanomaterials, 11, 1296. https://doi.org/10.3390/nano11051296.
  131. Zhang, P., Yuan, P., Guan, J., Yao, X. and Li, L. (2021b), "Statistical analysis of three-point-bending fracture failure of mortar", Constr. Build. Mater., 300, 123883. https://doi.org/10.1016/j.conbuildmat.2021.123883.
  132. Zhang, P., Zhang, H., Cui, G., Yue, X., Guo, J. and Hui, D. (2021c) "Effect of steel fiber on impact resistance and durability of concrete containing nano-SiO2", Nanotech. Rev. 10, 504-517. https://doi.org/10.1515/ntrev-2021-0040.
  133. Zhu, X., Chen, X., Bai, Y., Ning, Y. and Zhang W. (2022), "Evaluation of fracture behavior of high-strength hydraulic concrete damaged by freeze-thaw cycle test", Constr. Build. Mater., 321, 126346. https://doi.org/10.1016/j.conbuildmat.2022.126346.