DOI QR코드

DOI QR Code

Reliability analysis of soil slope reinforced by micro-pile considering spatial variability of soil strength parameters

  • Yuke Wang (School of Water Conservancy and Transportation, Zhengzhou University) ;
  • Haiwei Shang (School of Water Conservancy and Transportation, Zhengzhou University) ;
  • Yukuai Wan (School of Civil and Hydraulic Engineering, Ningxia University) ;
  • Xiang Yu (School of Water Conservancy and Transportation, Zhengzhou University)
  • Received : 2022.08.03
  • Accepted : 2024.03.18
  • Published : 2024.03.25

Abstract

In the traditional slope stability analysis, ignoring the spatial variability of slope soil will lead to inaccurate analysis. In this paper, the K-L series expansion method is adopted to simulate random field of soil strength parameters. Based on Random Limit Equilibrium Method (RLEM), the influence of variation coefficient and fluctuation range on reliability of soil slope supported by micro-pile is investigated. The results show that the fluctuation ranges and the variation coefficients significantly influence the failure probability of soil slope supported by micro-pile. With the increase of fluctuation range of soil strength parameters, the mean safety factor of the slope increases slightly. The failure probability of the soil slope increases with the increase of fluctuation range when the mean safety factor of the slope is greater than 1. The failure probability of the slope increases by nearly 8.5% when the fluctuation range is increased from δv=2 m to δv =8 m. With the increase of the variation coefficient of soil strength parameters, the mean safety factor of the slope decreases slightly, and the probability of failure of soil slope increases accordingly. The failure probability of the slope increases by nearly 31% when the variation coefficient increases from COVc=0.2, COVφ=0.05 to COVc=0.5, COVφ=0.2.

Keywords

Acknowledgement

The research described in this paper was financially supported by Natural Science Foundation of Henan (232300421069); Central Plains Science and Technology Innovation Leader Project (234200510014); Program for Science and Technology Innovation Talents in Universities of Henan Province (24HASTIT014); Natural Science Foundation of Ningxia (2023AAC03036) and the First Class Discipline Construction in Ningxia (No. NXYLXK2021A03); Project of Science and Technology Department of Henan Provincial Department of Transportation (2022-5-5). These financial supports are gratefully acknowledged; Henan Provincial Key Laboratory of Grain and Oil Warehousing Construction and Safety Open Subjects (2020KF-B06).

References

  1. Asaoka, A. and Agrivas, D. (1982), "Spatial variability of the undrained strength of clays", J. Geotech. Eng. Division - ASCE, 108(5), 743-756. https://doi.org/10.1061/AJGEB6.0001292.
  2. Chen, F., Zhang, R., Wang, Y., Liu, H., Boehlke, T. and Zhang, W. (2020), "Probabilistic stability analyses of slope reinforced with piles in spatially variable soils", Int. J. Approx. Reason., 122, 66-79. https://doi.org/10.1016/j.ijar.2020.04.006.
  3. Cheng, H., Chen, J., Chen, R., Chen, G. and Zhong, Y. (2018), "Risk assessment of slope failure considering the variability in soil properties", Comput. Geotech., 103, 61-72. https://doi.org/10.1016/j.compgeo.2018.07.006.
  4. Chiasson, P., Lafleur, J., Soulie, M. and Law, K.T. (1995), "Characterizing spatial variability of a clay by geostatistics". Can. Geotech. J., 32(1), 1-10. https://doi.org/10.1139/t95-001.
  5. Cho, S.E. (2010), "Probabilistic assessment of slope stability that considers the spatial variability of soil properties", J. Geotech. Geoenviron. Eng., 136(7), 975-984. https://doi.org/10.1061/(asce)gt.1943-5606.0000309.
  6. Degroot, D.J. and Baecher, G.B. (1993), "Estimating autocovariance of insitu soil properties", J. Geotech. Eng. - ASCE, 119(1), 147-166. https://doi.org/10.1061/(asce)0733-9410(1993)119:1(147).
  7. Deng, D., Li, L. and Zhao, L. (2017), "Limit-equilibrium method for reinforced slope stability and optimum design of antislide micro-pile parameters", Int. J. Geomech., 17(2). https://doi.org/10.1061/(asce)gm.1943-5622.0000722.
  8. Duncan, J.M. (2000), "Factors of safety and reliability in geotechnical engineering", J. Geotech. Geoenviron. Eng., 126(4), 307-316. https://doi.org/10.1061/(asce)1090-0241(2000)126:4(307).
  9. Fenton, G.A. and Griffiths, D.V. (2003), "Bearing-capacity prediction of spatially random c-phi soils", Can. Geotechn. J., 40(1), 54-65. https://doi.org/10.1139/t02-086.
  10. Fenton, G.A. and Vanmarcke, E.H. (1991), "Spatial variation in liquefaction risk assessment", Geotech. Eng. Congress ASCE, 594-607. https://doi.org/10.1680/geot.1998.48.6.819.
  11. Griffiths, D.V. and Fenton, G.A. (2004), "Probabilistic slope stability analysis by finite elements", J. Geotech. Geoenviron. Eng., 130(5), 507-518. https://doi.org/10.1061/(asce)1090-0241(2004)130:5(507).
  12. Griffiths, D.V., Huang, J. and Fenton, G.A. (2009), "Influence of spatial variability on slope reliability using 2-d random fields", J. Geotech. Geoenviron. Eng., 135(10), 1367-1378. https://doi.org/10.1061/(asce)gt.1943-5606.0000099.
  13. Griffiths, D.V., Huang, J. and Fenton, G.A. (2011), "Probabilistic infinite slope analysis", Comput. Geotech., 38(4), 577-584. https://doi.org/10.1016/j.compgeo.2011.03.006.
  14. Huang, D., Song, Y., Ma, G., Pei, X. and Huang, R. (2019), "Numerical modeling of the 2008 Wenchuan earthquake-triggered Niumiangou landslide considering effects of pore-water pressure", Bull. Eng. Geol. Environ., 78(7), 4713-4729. https://doi.org/10.1007/s10064-018-01433-7.
  15. Javankhoshdel, S., Luo, N. and Bathurst, R.J. (2017), "Probabilistic analysis of simple slopes with cohesive soil strength using RLEM and RFEM", Georisk-Assessment and Management of Risk for Engineered Systems and Geohazards, 11(3), 231-246. https://doi.org/10.1080/17499518.2016.1235712.
  16. Jiang, S., Li, D., Cao, Z., Zhou, C. and Phoon, K. (2015), "Efficient system reliability analysis of slope stability in spatially variable soils using monte carlo simulation", J. Geotech. Geoenviron. Eng., 141(2). https://doi.org/10.1061/(asce)gt.1943-5606.0001227.
  17. Li, C., Lin, M. and Huang, W. (2019), "Interaction between pile groups and thrust faults in a physical sandbox and numerical analysis", Eng. Geol., 252, 65-77. https://doi.org/10.1016/j.enggeo.2019.02.023.
  18. Li, X., Zhang, L., Gao, L. and Zhu, H. (2017), "Simplified slope reliability analysis considering spatial soil variability". Eng. Geol., 216, 90-97. https://doi.org/10.1016/j.enggeo.2016.11.013.
  19. Liu, X., Li, D.Q., Cao, Z.J. and Wang, Y. (2019), "Adaptive Monte Carlo simulation method for system reliability analysis of slope stability based on limit equilibrium methods", Eng. Geol., 264, 105384. https://doi.org/10.1016/j.enggeo.2019.105384.
  20. Luo, N., Bathurst, R.J. and Javankhoshdel, S. (2016), "Probabilistic stability analysis of simple reinforced slopes by finite element method", Comput. Geotech., 77, 45-55. https://doi.org/10.1016/j.compgeo.2016.04.001.
  21. Luo, Z. and Hu, B. (2019), "Probabilistic design model for energy piles considering soil spatial variability", Comput. Geotech., 108, 308-318. https://doi.org/10.1016/j.compgeo.2019.01.003.
  22. Mao, W., Liu, B., Rasouli, R., Aoyama, S. and Towhata, I. (2019), "Performance of piles with different configurations subjected to slope deformation induced by seismic liquefaction", Eng. Geol., 263, 105355. https://doi.org/10.1016/j.enggeo.2019.105355.
  23. Mayer, J.M. and Stead, D. (2017), "A comparison of traditional, step-path, and geostatistical techniques in the stability analysis of a large open pit", Rock Mech. Rock Eng., 50(4), 927-949. https://doi.org/10.1007/s00603-016-1148-0.
  24. Pang, R., Xu, B., Zhou, Y. and Song, L. (2021), "Seismic time-history response and system reliability analysis of slopes considering uncertainty of multi-parameters and earthquake excitations", Comput. Geotech., 136, 104245. https://doi.org/10.1016/j.compgeo.2021.104245.
  25. Pang, R., Zhou, Y., Chen, G., Jing, M. and Yang, D. (2023), "Stochastic mainshock-aftershock simulation and its applications in dynamic reliability of structural systems via DPIM", J. Eng. Mech., 149(1), 04022096. https://doi.org/10.1061/(ASCE)EM.1943-7889.0002176.
  26. Phoon, K.K. (2008), "Reliability-based design in geotechnical engineering: Computations and applications", Taylor and Francis, New York, NY, USA.
  27. Phoon, K.K. and Kulhawy, F.H. (1999a), "Characterization of geotechnical variability", Can. Geotech. J., 36(4), 612-624. https://doi.org/10.1139/t99-038.
  28. Phoon, K.K. and Kulhawy, F.H. (1999b), "Evaluation of geotechnical property variability", Can. Geotech. J., 36(4), 625-639. https://doi.org/10.1139/cgj-36-4-625.
  29. Soulie, M., Montes, P. and Silvestri, V. (1990), "Modeling spatial variability of soil parameters", Can. Geotech. J., 27(5), 617-630. https://doi.org/10.1139/t90-076.
  30. Suchomel, R. and Masin, D. (2010), "Comparison of different probabilistic methods for predicting stability of a slope in spatially variable c-phi soil", Comput. Geotech., 37(1-2), 132-140. https://doi.org/10.1016/j.compgeo.2009.08.005.
  31. Tang, L., Cong, S., Xing, W., Ling, X., Geng, L., Nie, Z. and Gan, F. (2018), "Finite element analysis of lateral earth pressure on sheet pile walls", Eng. Geol., 244, 146-158. https://doi.org/10.1016/j.enggeo.2018.07.030.
  32. Teixeira, A., Honjo, Y., Correia, A.G. and Henriques, A.A. (2012), "Sensitivity analysis of vertically loaded pile reliability", Soils Found., 52(6), 1118-1129. https://doi.org/10.1016/j.sandf.2012.11.025.
  33. Wan, Y., Fu, H. and Wang, Y. (2023), "Study on the influence of spatial variability of soil strength parameters on reliability and slip surfaces of cofferdam slope reinforced by geosynthetic reinforcement", Mar. Georesour. Geotech., 42(3), 233-242. https://doi.org/10.1080/1064119X.2023.2169650.
  34. Wang, Y., Han, M., Li, B. and Wan, Y. (2022b), "Stability evaluation of earth-rock dam reinforcement with new permeable polymer based on reliability method", Constr. Build. Mater., 320, 126294. https://doi.org/10.1016/j.conbuildmat.2021.126294.
  35. Wang, Y., Fu, H., Wan, Y. and Yu, X. (2022a), "Reliability and parameter sensitivity analysis on geosynthetic-reinforced slope with considering spatially variability of soil properties", Constr. Build. Mater., 350, 128806. https://doi.org/10.1016/j.conbuildmat.2022.128806.
  36. Wang, Y., Shao, L., Wan, Y. and Chen, H. (2024), "Reliability analysis of three-dimensional reinforced slope considering the spatial variability in soil parameters", Stochastic Environ. Res. Risk Assessment, 1-14. https://doi.org/10.1007/s00477-023-02636-5.
  37. Wang, Y., Shao, L., Wan, Y., Jiang, R. and Yu, X. (2023), "Three-dimensional reliability stability analysis of earth-rock dam slopes reinforced with permeable polymer", Probabilist. Eng. Mech., 74, 103537. https://doi.org/10.1016/j.probengmech.2023.103537.
  38. Xu, B., Pang, R. and Zhou, Y. (2020), "Verification of stochastic seismic analysis method and seismic performance evaluation based on multi-indices for high CFRDs", Eng. Geol., 264. https://doi.org/10.1016/j.enggeo.2019.105412.
  39. Zhang, F., Ge, B., Leshchinsky, D., Shu, S.and Gao, Y. (2023), "Effects of multitiered configuration on the internal stability of GRS walls", J. Geotech. Geoenviron. Eng., 149(12), 04023122. https://doi.org/10.1061/JGGEFK.GTENG-11723.
  40. Zhang, W., Wang, Q., Chen, F., Chen, L., Wang, L., Wang, L., Zhang, Y., Wang, Y. and Zhu, X. (2021), "Reliability analysis of slope and random response of anti-sliding pile considering spatial variability of rock mass properties", Rock Soil Mech., 42(11), 3157-3168. https://doi.org/10.16285/j.rsm.2021.0464.
  41. Zhou, G., Esaki, T., Mitani, Y., Xie, M. and Mori, J. (2003), "Spatial probabilistic modeling of slope failure using an integrated GIS Monte Carlo simulation approach", Eng. Geol., 68(3-4), 373-386. https://doi.org/10.1016/s0013-7952(02)00241-7.