DOI QR코드

DOI QR Code

Effect of the initial imperfection on the response of the stainless steel shell structures

  • Ali Ihsan Celik (Tomarza Mustafa Akincioglu Vocational School, Department of Construction, Kayseri University) ;
  • Ozer Zeybek (Department of Civil Engineering, Faculty of Engineering, Mugla Sitki Kocman University) ;
  • Yasin Onuralp Ozkilic (Department of Civil Engineering, Faculty of Engineering, Necmettin Erbakan University)
  • Received : 2023.10.26
  • Accepted : 2024.02.06
  • Published : 2024.03.25

Abstract

Analyzing the collapse behavior of thin-walled steel structures holds significant importance in ensuring their safety and longevity. Geometric imperfections present on the surface of metal materials can diminish both the durability and mechanical integrity of steel shells. These imperfections, encompassing local geometric irregularities and deformations such as holes, cavities, notches, and cracks localized in specific regions of the shell surface, play a pivotal role in the assessment. They can induce stress concentration within the structure, thereby influencing its susceptibility to buckling. The intricate relationship between the buckling behavior of these structures and such imperfections is multifaceted, contingent upon a variety of factors. The buckling analysis of thin-walled steel shell structures, similar to other steel structures, commonly involves the determination of crucial material properties, including elastic modulus, shear modulus, tensile strength, and fracture toughness. An established method involves the emulation of distributed geometric imperfections, utilizing real test specimen data as a basis. This approach allows for the accurate representation and assessment of the diversity and distribution of imperfections encountered in real-world scenarios. Utilizing defect data obtained from actual test samples enhances the model's realism and applicability. The sizes and configurations of these defects are employed as inputs in the modeling process, aiding in the prediction of structural behavior. It's worth noting that there is a dearth of experimental studies addressing the influence of geometric defects on the buckling behavior of cylindrical steel shells. In this particular study, samples featuring geometric imperfections were subjected to experimental buckling tests. These same samples were also modeled using Finite Element Analysis (FEM), with results corroborating the experimental findings. Furthermore, the initial geometrical imperfections were measured using digital image correlation (DIC) techniques. In this way, the response of the test specimens can be estimated accurately by applying the initial imperfections to FE models. After validation of the test results with FEA, a numerical parametric study was conducted to develop more generalized design recommendations for the stainless-steel shell structures with the initial geometric imperfection. While the load-carrying capacity of samples with perfect surfaces was up to 140 kN, the load-carrying capacity of samples with 4 mm defects was around 130 kN. Likewise, while the load carrying capacity of samples with 10 mm defects was around 125 kN, the load carrying capacity of samples with 14 mm defects was measured around 120 kN.

Keywords

Acknowledgement

The paper was supported by the Department of Scientific Research Projects at Necmettin Erbakan University coded with 221219015 and Ministry of Science and Higher Education of the Russian Federation as part of World-class Research Center program: Advanced Digital Technologies (contract No. 075-15-2022-312 dated 20.04.2022).

References

  1. Arbocz, J. and Babcock Jr, C.D. (1969), "The effect of general imperfections on the buckling of cylindrical shells", ASME. J. Appl. Mech. 36(1), 28--https://doi.org/10.1115/1.3564582.
  2. Al-Mekhlafi, G.M., Al-Osta, M.A. and Sharif, A.M. (2020), "Experimental and numerical investigations of stainless steel tubular columns strengthened by CFRP composites", Thin-Wall. Struct., 157, 107080. https://doi.org/10.1016/j.tws.2020.107080.
  3. Amazigo, J.C. and Budiansky, B. (1972), "Asymptotic formulas for the buckling stresses of axially compressed cylinders with localized or random axisymmetric imperfections", ASME. J. Appl. Mech. 39(1), 179-184. https://doi.org/10.1115/1.3422608
  4. Athiannan, K. and Palaninathan, R. (2004), "Experimental investigations on buckling of cylindrical shells under axial compression and transverse shear", Sadhana. 29, 93-115. https://doi.org/10.1007/BF02707003.
  5. Bisagni, C. and Cordisco, P. (2003), "An experimental investigation into the buckling and post-buckling of CFRP shells under combined axial and torsion loading", Compos. Struct., 60(4), 391-402. https://doi.org/10.1016/S0263-8223(03)00024-2.
  6. Bochkareva, S.A. and Lekomtsev, S.V. (2022), "Natural vibrations and hydroelastic stability of laminated composite circular cylindrical shells", Struct. Eng. Mech., 81(6), 769-780. https://doi.org/10.12989/sem.2022.81.6.769.
  7. Bochkareva, S.A. and Lekomtsev, S.V. (2022), "Natural vibrationsand hydroelastic stability of laminated composite circularcylindrical shells", Struct. Eng. Mech., 81(6), 769-780.https://doi.org/10.12989/sem.2022.81.6.769. 
  8. Rotter, J.M. (2003), Cylindrical Shells Under Axial Compression, Chapter 2 of the book Buckling of Thin Metal Structures, edited by JG Teng and JM Rotter, Spon, London, 42-87
  9. Carvelli, V., Panzeri, P. and Poggi, C. (2000), "Numerical and experimental buckling analysis of GFRP shells for under-water vehicles". https://hdl.handle.net/11311/262975.
  10. Celik, A.I., Kose, M.M., Akgu L, T. and Alpay, A.C. (2018), "Directional-deformation analysis of cylindrical steel water tanks subjected to El-Centro Earthquake loading", Sigma J. Eng. Nat. Sci., 36(4), 1033-1046.
  11. Chryssanthopoulos, M.K., Elghazouli, A.Y. and Esong, I.E. (1999), "Compression tests on anti-symmetric two-ply GFRP cylinders", Compos. Part B: Eng., 30(4), 335-350. https://doi.org/10.1016/S1359-8368(99)00004-9.
  12. Daemi, H. and Eipakchi, H. (2020), "Effect of different viscoelastic models on free vibrations of thick cylindrical shells through FSDT under various boundary conditions", Struct. Eng. Mech., 73(3), 319-330. https://doi.org/10.12989/sem.2020.73.3.319.
  13. Daemi, H. and Eipakchi, H. (2020), "Effect of differentviscoelastic models on free vibrations of thick cylindrical shellsthrough FSDT under various boundary conditions", Struct. Eng. Mech., 73(3), 319-330. https://doi.org/10.12989/sem.2020.73.3.319.
  14. EN 1993-1-6 (2007), Eurocode 3-Design of Steel Structures-Part 1.6: Strength and Stability of Shell Structures, Brussels: CEN
  15. Featherston, C.A. (2001), "Imperfection sensitivity of flat plates under combined compression and shear", Int. J. Non-Linear Mech., 36(2), 249-259. https://doi.org/10.1016/S0020-7462(00)00009-3
  16. Featherston, C.A. (2003), "Imperfection sensitivity of curved panels under combined compression and shear", Int. J. NonLinear Mech., 38(2), 225-238. https://doi.org/10.1016/S0020-7462(01)00058-0
  17. Fu, Z.H., Yang, B.J., Shan, M.L., Li, T., Zhu, Z.Y., Ma, C.P. and Gao, W. (2020), "Hydrogen embrittlement behavior of SUS301L-MT stainless steel laser-arc hybrid welded joint localized zones", Corrosion Sci., 164, 108337. https://doi.org/10.1016/j.corsci.2019.108337.
  18. Gardner, L. (2008), Aesthetics, Economics and Design of Stainless Steel Structures.
  19. Gerasimidis, S., Virot, E., Hutchinson, J.W. and Rubinstein, S.M. (2018), "On establishing buckling knockdowns for imperfection-sensitive shell structures", ASME. J. Appl. Mech. 85(9), 091010. https://doi.org/10.1115/1.4040455.
  20. Ghatage, P.S. and Sudhagar, P.E. (2023), "Free vibrational behavior of bi-directional perfect and imperfect axially graded cylindrical shell panel under thermal environment", Struct. Eng. Mech., 85(1), 135. https://doi.org/10.12989/sem.2023.85.1.135.
  21. Gorbachov, A., Stranghoner, N. and Rotter, J.M. (2017), "04.03: Buckling behaviour of axially compressed cylindrical shells made of stainless steel", ce/papers. 1(2-3), 828-837. https://doi.org/10.1002/cepa.123.
  22. Greiner, R., Schmidt, H. and Rotter, J.M. (2008), Rules for the buckling limit state Assessment Using Stress Design, ECCSEuropean Convention for Constructional Steelwork.
  23. Hambly, E.T. and Calladine, C.R. (1996), "Buckling experiments on damaged cylindrical shells", Int. J. Solids Struct., 33(24), 3539-3548. https//doi.org/10.1016/0020-7683(95)00194-8.
  24. Hautala, K.T. (2003), "Buckling reduction factors for stainless steel structures", available at http//www.worldstainless.org/NR/rdonlyres/7DE712B1-41EF-414B-AA2FCC13B20860DE7/2440/Bucklingreductionfactorsforstainlesssteelstru.pdf.
  25. He, H., Shuang, E., Ai, L., Wang, X., Yao, J., He, C. and Cheng, B. (2023), "Exploiting machine learning for controlled synthesis of carbon dots-based corrosion inhibitors", J. Cleaner Product., 419, 138210. https://doi.org/10.1016/j.jclepro.2023.138210.
  26. Hua, L., Liu, Y., Qian, D., Xie, L., Wang, F. and Wu, M. (2022), "Mechanism of void healing in cold rolled aeroengine M50 bearing steel under electroshocking treatment: A combined experimental and simulation study", Mater. Character., 185, 111736. https://doi.org/10.1016/j.matchar.2022.111736
  27. Hutchinson, J.W. (2016), "Buckling of spherical shells revisited", Proceedings of the Royal Society A: Mathematical, Phys. Eng. Sci., 472(2195), 20160577. https://doi.org/10.1098/rspa.2016.0577.
  28. Kaya, S. and Salim, D. (2017), Shear Stiffness and Capacity of Joints Between Precast Wall Elements,
  29. Khadimallah, M.A., Benslimane, A., Harbaoui, I., Helaili, S., Hussain, M., Ali, M.R. and Tounsi, A. (2023), "An innovative fraction laws with ring support: Active vibration control of rotating FG cylindrical shell", Earthq. Struct., 24(4), 237-245. https://doi.org/10.12989/eas.2023.24.4.237.
  30. Khalilzadehtabrizi, S., Seifiasl, A. and Asl, M.H. (2021), "Measurement of deformation patterns in steel plate shear walls subjected to cyclic loading based on multi-target digital image correlation (MT-DIC)", Structures, 33, 2611-2627. https://doi.org/10.1016/j.istruc.2021.06.007.
  31. Khelil, A. (2002), "Buckling of steel shells subjected to non-uniform axial and pressure loading", Thin-Wall. Struct., 40(11), 955-970. https://doi.org/10.1016/S0263-8231(02)00040-X.
  32. Kim, S.-E. and Kim, C.-S. (2002), "Buckling strength of the cylindrical shell and tank subjected to axially compressive loads", Thin-Wall. Struct., 40(4), 329-353. https://doi.org/10.1016/S0263-8231(01)00066-0.
  33. Krisnakumar, S. and Forster, C.G. (1991), "Axial load compatibility of cylindrical shells with local geometric effects", Experim. Mech., 31, 104-110. https://doi.org/10.1007/BF02327560
  34. Kumar Yadav, K. and Gerasimidis, S. (2019), "Instability of thin steel cylindrical shells under bending", Thin-Wall. Struct., 137, 151-166. https://doi.org/10.1016/j.tws.2018.12.043.
  35. Kumar, V. and Patel, P.V. (2016), "Strengthening of axially loaded concrete columns using stainless steel wire mesh (SSWM)-numerical investigations", Struct. Eng. Mech., 60(6), 979-999. https://doi.org/10.12989/sem.2016.60.6.979.
  36. Lee, A., Lopez Jimenez, F., Marthelot, J., Hutchinson, J.W. and Reis, P.M. (2016), "The geometric role of precisely engineered imperfections on the critical buckling load of spherical elastic shells", J. Appl. Mech., 83(11). https://doi.org/10.1115/1.4034431.
  37. Li, J., Wang, Z., Zhang, S., Lin, Y., Wang, L., Sun, C. and Tan, J. (2023), "A novelty mandrel supported thin-wall tube bending cross-section quality analysis: a diameter-adjustable multi-point contact mandrel", Int. J. Adv. Manufact. Technol., 124(11), 4615-4637. https://doi.org/10.1007/s00170-023-10838-y.
  38. Li, W., Liu, H., Zhu, J., Zhang, X., Li, G., Li, Y. and Li, H. (2024), "Efficient photocathodic protection of nanoflower MgIn2S4-modified CNNs composites on 316 SS under visible light", Mater. Res. Bull., 173, 112694. https://doi.org/10.1016/j.materresbull.2024.112694.
  39. Liang, F., Wang, R., Pang, Q. and Hu, Z. (2023), "Design and optimization of press slider with steel-aluminum composite bionic sandwich structure for energy saving", J. Clean. Product., 428, 139341. https://doi.org/10.1016/j.jclepro.2023.139341.
  40. Liao, D., Zhu, S., Keshtegar, B., Qian, G. and Wang, Q. (2020), "Probabilistic framework for fatigue life assessment of notched components under size effects", Int. J. Mech. Sci., 181, 105685. https://doi.org/10.1016/j.ijmecsci.2020.105685.
  41. Lu, Z., Gu, D., Ding, H., Lacarbonara, W. and Chen, L. (2020), "Nonlinear vibration isolation via a circular ring", Mech. Syst. Signal Processing, 136, 106490. https://doi.org/10.1016/j.ymssp.2019.106490
  42. Moradi, A., Poorveis, D. and Khajehdezfuly, A. (2022), "Buckling of FGM elliptical cylindrical shell under follower lateral pressure", Steel Compos. Struct., 45(2), 175-191. https://doi.org/10.12989/scs.2022.45.2.175.
  43. Morris, N.F. (1991), "Effect of imperfections on lattice shells", J. Struct. Eng., 117(6), 1796-1814. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:6(1796.
  44. Ning, X. and Pellegrino, S. (2015), "Imperfection-insensitive axially loaded thin cylindrical shells", Int. J. Solids Struct., 62, 39-51. https://doi.org/10.1016/j.ijsolstr.2014.12.030.
  45. Ning, X. and Pellegrino, S. (2017), "Experiments on imperfection insensitive axially loaded cylindrical shells", Int. J. Solids Struct., 115, 73-86. https://doi.org/10.1016/j.ijsolstr.2017.02.028.
  46. Patel, P.V., Raiyani, S.D. and Shah, P.J. (2018), "Torsional strengthening of RC beams using stainless steel wire mesh-Experimental and numerical study", Struct. Eng. Mech., 67(4), 391-401. https://doi.org/10.12989/sem.2018.67.4.391.
  47. Prabu, B., Raviprakash, A. and Rathinam, N. (2010), "Parametric study on buckling behaviour of thin stainless steel cylindrical shells for circular dent dimensional variations under uniform axial compression", Int. J. Eng. Sci. Technol., 2(4), 134-149. https://doi.org/10.4314/ijest.v2i4.59282.
  48. Salmi, P. and Ala-Outinen, T. (1998), "Cylindrical shell structures from austenitic stainless steel under meridional compression", VTT Technical Research Centre of Finland.
  49. Schneider Jr, M.H. (1996), "Investigation of the stability of imperfect cylinders using structural models", Eng. Struct., 18(10), 792-800. https://doi.org/10.1016/0141-0296(96)00002-8.
  50. Shokrollahi, H. (2018), "Deformation and stress analysis of a sandwich cylindrical shell using HDQ Method", Steel Compos. Struct., 27(1), 35-48. https://doi.org/10.12989/scs.2018.27.1.035.
  51. Singer, J. (1999), "On the importance of shell buckling experiments". ASME. Appl. Mech. Rev. 52(6), R17-R25. https://doi.org/10.1115/1.3098935.
  52. Sonat, C., Topkaya, C. and Rotter, J.M. (2015), "Buckling of cylindrical metal shells on discretely supported ring beams", Thin-Wall. Struct., 93, 22-35. https://doi.org/10.1016/j.tws.2015.03.003.
  53. Spagnoli, A. and Chryssanthopoulos, M.K. (1999), "Elastic buckling and postbuckling behaviour of widely-stiffened conical shells under axial compression", Eng. Struct., 21(9), 845-855. https://doi.org/10.1016/S0141-0296(98)00036-4.
  54. Standard, A.P.I. (2013), "Welded tanks for oil storage", Amer. Petroleum Institute. 1220.
  55. Stranghoner, N., Azizi, E. and Gorbachov, A. (2019), "Influence of material nonlinearity on the buckling resistance of stainless steel shells", J. Construct. Steel Res., 157, 386-396. https://doi.org/10.1016/j.jcsr.2019.02.030.
  56. Su, Y., Shen, Z., Long, X., Chen, C., Qi, L. and Chao, X. (2023), "Gaussian filtering method of evaluating the elastic/elastoplastic properties of sintered nanocomposites with quasi-continuous volume distribution", Mater. Sci. Eng. A, 872, 145001. https://doi.org/10.1016/j.msea.2023.145001.
  57. Taheri-Behrooz, F. and Omidi, M. (2018), "Buckling of axially compressed composite cylinders with geometric imperfections", Steel Compos. Struct., 29(4), 557-567. https://doi.org/10.12989/scs.2018.29.4.557.
  58. Taheri-Behrooz, F. and Omidi, M. (2018), "Buckling of axiallycompressed composite cylinders with geometric imperfections", Steel Compos. Struct., 29(4), 557-567.https://doi.org/10.12989/scs.2018.29.4.557.
  59. Teng, J.G. and Song, C.Y. (2001), "Numerical models for nonlinear analysis of elastic shells with eigenmode-affine imperfections", Int. J. Solids Struct., 38(18), 3263-3280. https://doi.org/10.1016/S0020-7683(00)00222-5.
  60. Timesli, A. (2020), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete, 26(1), 53-62. https://doi.org/10.12989/cac.2020.26.1.053.
  61. Wang, C., Wang, Z., Zhang, S., Liu, X. and Tan, J. (2023), "Reinforced quantum-behaved particle swarm-optimized neural network for cross-sectional distortion prediction of novel variable-diameter-die-formed metal bent tubes", J. Comput. Des. Eng., 10(3), 1060-1079. https://doi.org/10.1093/jcde/qwad037.
  62. Wang, D., Zhao, Z., Ou, T., Xin, Z., Wang, M. and Zhang, Y. (2021), "Wind resistance performance of a continuous welding stainless steel roof under static ultimate wind loading with testing and simulation methods", Wind Struct., 32(1), 55. https://doi.org/10.12989/was.2021.32.1.055.
  63. Wang, F.-C. and Han, L.-H. (2019), "Analytical behavior of carbon steel-concrete-stainless steel double-skin tube (DST) used in submarine pipeline structure", Marine Struct., 63, 99-116. https://doi.org/10.1016/j.marstruc.2018.09.001.
  64. Wang, H., Wang, F., Qian, D., Chen, F., Dong, Z. and Hua, L. (2023), "Investigation of damage mechanisms related to microstructural features of ferrite-cementite steels via experiments and multiscale simulations", Int. J. Plasticity, 170, 103745. https://doi.org/10.1016/j.ijplas.2023.103745.
  65. Weingarten, V.I., Seide, P. and Peterson, J.P. (1968), Buckling of Thin-Walled Circular Cylinders.
  66. Xiang, Y., Wang, Z., Zhang, S., Jiang, L., Lin, Y. and Tan, J. (2024), "Cross-sectional performance prediction of metal tubes bending with tangential variable boosting based on parameters-weight-adaptive CNN", Expert Syst. Appl., 237, 121465. https://doi.org/10.1016/j.eswa.2023.121465.
  67. Yadav, K.K. and Gerasimidis, S. (2019), "Instability of thin steel cylindrical shells under bending", Thin-Wall. Struct., 137, 151-166. https://doi.org/10.1016/j.tws.2018.12.043.
  68. Yadav, K.K. and Gerasimidis, S. (2020), "Imperfection insensitivity of thin wavy cylindrical shells under axial compression or bending", J. Appl. Mech., 87(4), 041003. https://doi.org/10.1115/1.4045741.
  69. Yadav, K.K. and Gerasimidisa, S. "Imperfection insensitivity of wavy cross-sectional thin cylindrical shells under bending", 2018.
  70. Yang, H., Hu, J., Xu, L. and Lu, G. (2016), "Peripheral deformation and buckling of stainless steel hemispherical shells compressed by a flat plate", Latin Amer. J. Solids Struct., 13, 257-271. https://doi.org/10.1590/1679-78252434.
  71. Zenkov, E.V. (2021), "Investigation of the stress-strain state of racks of light steel thin-walled structures by the method of digital image correlation", Mater. Today: Proceedings, 38, 1375-1378, https://doi.org/10.1016/j.matpr.2020.08.107.
  72. Zeybek, O . and Ozkilic, Y.O. (2023), "Effects of reinforcing steel tanks with intermediate ring stiffeners on wind buckling during construction", J. Construct. Steel Res., 203, 107832. https://doi.org/10.1016/j.jcsr.2023.107832.
  73. Zeybek, O . and Topkaya, C. (2022), "Stiffness requirements for wind girders in open-top cylindrical steel tanks", Thin-Wall. Struct., 176, 109353. https://doi.org/10.1016/j.tws.2022.109353.
  74. Zeybek, O . Celik A.I and Ozkilic, Y.O. (2023), "Buckling of axially loaded shell structures made of stainless steel", Steel Compos. Struct., 48(6), 681-691. https://doi.org/10.12989/scs.2023.48.6.681.
  75. Zhang, R., Meng, X. and Gardner, L. (2022), "Shape optimisation of stainless steel corrugated cylindrical shells for additive manufacturing", Eng. Struct., 270, 114857. https://doi.org/10.1016/j.engstruct.2022.114857.
  76. Zhang, X., Li, Z., Yang, Z., Jiang, L. and Pan, G. (2022), "Buckling of composite shells with a novel initial imperfection model subjected to hydrostatic pressure", Compos. Struct., 297, 115949. https://doi.org/10.1016/j.compstruct.2022.115949.
  77. Zhao, C., Matsuda, H., Lou, S., Guan, Z.C. and Tian, J.S. (2013), "Visualization of buckling on thin-walled cylindrical shell by digital image correlation method", Appl. Math. Inf. Sci., 7(3), 999-1004. https://doi.org/10.12785/amis/070318
  78. Zhu, Q., Chen, J., Gou, G., Chen, H. and Li, P. (2017), "Ameliorated longitudinal critically refracted-Attenuation velocity method for welding residual stress measurement", J. Mater. Processing Technol., 246, 267-275. https://doi.org/10.1016/j.jmatprotec.2017.03.022.